
Department of Information Technology
and Electrical Engineering

Computer Engineering
and Networks Laboratory

Master’s Thesis

Event Correlation Engine

Andreas Müller
Spring Term 2009

Tutors:
Christoph Göldi

Bernhard Tellenbach

Supervisors:
Prof. Bernhard Plattner

Stefan Lampart

Institut für
Technische Informatik und
Kommunikationsnetze

Preface

Abstract

As modern IT systems running on distributed platforms tend to become more and more complex,
the required management effort grows as well, and it is no longer economic, to manage a complete
system manually.

In the search for a way to handle status and incident messages from various subsystems in an
automated way, the use of event correlation techniques has become widespread in recent years.
Although many products for event correlation are readily available today, there is no universal
solution for all applications, and event correlation remains an open research topic.

This thesis investigates the use of a correlation engine in the context of a global network
offering various services, as a means to facilitate the monitoring of the network and of the
individual services. After the analysis of the occurring event patterns, and the specification of the
resulting requirements, a suitable correlation engine is presented, and its aptitude is evaluated.

Outline

This master’s thesis report is split into the following chapters:

Chapter Introduction presents the project and some background.

Chapter Event Pattern Analysis examines event statistics and discusses the most frequent
patterns occurring at Open Systems.

Chapter Survey of Existing Event Correlation Approaches reviews existing approaches
as well as some of the available event correlation applications.

Chapter Event Correlation Engine Specification discusses the requirements and a speci-
fication for a suitable correlation engine.

Chapter Implementation explains the implementation details and concepts.

Chapter Evaluation investigates the aptitude of the developed correlation engine for real-
world events.

Chapter Conclusions and Outlook reviews the project and draws some conclusions.

ii

Abstract (German Translation)

Da moderne, auf verteilten Plattformen betriebene IT-Systeme zunehmend komplexer werden,
steigt unweigerlich auch der Aufwand, diese Systeme zu überwachen und zu unterhalten.

Auf der Suche nach Möglichkeiten, Status- und Problemmeldungen automatisiert zu verar-
beiten, gerät Ereigniskorrelation immer mehr ins Blickfeld. Obwohl inzwischen diverse Produkte
zur Ereigniskorrelation verfügbar sind, gibt es dabei keine universelle Lösung für alle Anwendun-
gen, und Ereigniskorrelation bleibt ein offenes Forschungsgebiet.

Diese Masterarbeit untersucht die Verwendung von Ereigniskorrelation im Rahmen eines glob-
alen Netzwerkes, auf dem verschiedenste Dienste betrieben werden. Das Ziel dabei ist es, die
Überwachung des Netzwerkes sowie der einzelnen Dienste zu automatisieren und zu vereinfachen.
Nach einer Analyse der auftretenden Event-Muster, und der Spezifikation der daraus resultieren-
den Anforderungen, wird eine passende Anwendung zur Ereigniskorrelation vorgestellt, und ihre
Eignung ausgewertet.

iii

Author: Andreas Müller andrmuel@ee.ethz.ch
Tutors: Christoph Göldi chg@open.ch

Bernhard Tellenbach tellenbach@tik.ee.ethz.ch
Supervisors: Prof. Bernhard Plattner plattner@tik.ee.ethz.ch

Stefan Lampart stl@open.ch

Acknowledgements

This thesis would not have been possible without the support of various people, to whom I would
like to express my gratitude.

I would like to thank Christoph Göldi from Open Systems for his continued support with
explanations, ideas and feedback throughout this thesis, as well as Bernhard Tellenbach from the
TIK, for supporting me with interesting ideas and a lot of feedback concerning both technical
and formal aspects of this thesis.

Furthermore, I would like to thank Open Systems for providing the possibility to realize this
thesis in a real-world environment, which made the task much more interesting. The people at
Open Systems were very friendly and supportive; among others, I would like to thank Renato,
Patrick, Thomas, Roel, Goetz, David and Stefan, for helping me identify problematic event
patterns, and for providing ideas on how to handle them.

At the ETH, I would further like to thank Professor Bernhard Plattner from the TIK, for
supervising this thesis, and for allowing me to do this master thesis in a collaboration between
the TIK and Open Systems.

Last but not least, I also feel grateful towards the developers of Python, Vim, LATEX, and
various other free software applications, toolkits and libraries, which made the writing of this
thesis and the development of the accompanying tools both more productive and more fun.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement and Setup . 1
1.3 Task Description . 2
1.4 Introduction to Event Correlation . 2
1.5 Terminology . 3

1.5.1 False Positive and False Negative . 3
1.5.2 Event Correlation Terminology . 3
1.5.3 CEP and ESP . 4
1.5.4 SIM . 4
1.5.5 Acronyms . 4

1.6 Typography . 5
1.6.1 Host Names . 5

2 Event Pattern Analysis 6
2.1 Statistics . 6

2.1.1 Database Dump Format and Event Type Names 7
2.1.2 Most Frequent Event Types and Most Active Hosts 7
2.1.3 A Graphical Look at the Events and Event Bursts 8

2.2 A First Look at Correlation . 13
2.2.1 The Naive Correlation Approach . 13
2.2.2 Per-Host Correlation Across Event Types 14
2.2.3 Correlation Across Event Types and Hosts 16
2.2.4 Comparison to Another Month . 16

2.3 Identification and Classification of Event Patterns 19
2.3.1 Preliminary Remarks . 19
2.3.2 Multiple Identical Events for a Persistent Problem 20
2.3.3 Old Events . 21
2.3.4 Late Events for Closed Tickets . 21
2.3.5 Irrelevant Unique Events . 21
2.3.6 Flickering Services . 22
2.3.7 Dependencies Between Services on a Host 23
2.3.8 Events Caused by Problems on Another Host 25
2.3.9 Mutual Dependencies Between Hosts . 25
2.3.10 Location Dependent Relations . 26
2.3.11 Gathering of Additional Information . 26
2.3.12 Correlation with Information from External Sources 27

CONTENTS v

2.3.13 Summary . 27

3 Survey of Existing Event Correlation Approaches 29
3.1 Properties of Event Correlation Engines . 29

3.1.1 Domain Awareness . 29
3.1.2 Self-Learning vs. External Knowledge . 30
3.1.3 Real-time vs. Stored Data . 30
3.1.4 Stateless vs. Stateful . 30
3.1.5 Purely Passive vs. Active . 30
3.1.6 Centralized vs. Distributed . 31
3.1.7 Default Policy . 31
3.1.8 Loss of Information . 31
3.1.9 Transparency . 31
3.1.10 Robustness . 32
3.1.11 Maintainability . 32
3.1.12 Deep vs. Surface Knowledge . 32

3.2 Event Correlation Operations . 32
3.2.1 Compression . 32
3.2.2 Logical Operations . 33
3.2.3 Aggregation . 33
3.2.4 Filtering (Stateless Filtering) . 33
3.2.5 Suppression (Stateful Filtering) . 33
3.2.6 Thresholding . 33
3.2.7 Rate Limiting . 34
3.2.8 Escalation . 34
3.2.9 Temporal Relationship . 34
3.2.10 Generalization . 34
3.2.11 Specialization . 34
3.2.12 Clustering . 35

3.3 Event Correlation Techniques . 35
3.3.1 Finite State Machine Based . 35
3.3.2 Rule Based Event Correlation . 36
3.3.3 Case Based Reasoning . 37
3.3.4 Model Based Reasoning . 38
3.3.5 Codebook Based Event Correlation . 39
3.3.6 Voting Approaches . 40
3.3.7 Explicit Fault-localization . 40
3.3.8 Dependency Graphs . 41
3.3.9 Bayesian Network Based Event Correlation 41
3.3.10 Neural Network Approaches . 43
3.3.11 Even More Approaches . 43
3.3.12 Hybrid Approaches . 44
3.3.13 Summary . 45

3.4 Existing Open Source Event Correlation Software 45
3.4.1 Swatch . 45
3.4.2 LogSurfer . 46
3.4.3 SEC . 47
3.4.4 OSSEC . 48
3.4.5 OpenNMS . 50

CONTENTS vi

3.4.6 Prelude . 50
3.4.7 OSSIM . 51
3.4.8 Drools . 53
3.4.9 Esper . 54
3.4.10 Many Other Applications . 55

3.5 Commercial Event Correlation Products . 55
3.5.1 IBM Tivoli Enterprise Console . 55
3.5.2 HP Event Correlation Services . 56
3.5.3 Many Other Applications . 57

3.6 Comparison of Existing Event Correlation Software 57

4 Specification 59
4.1 Requirements and Assumptions . 59

4.1.1 A Case for a Rule Based Correlation Engine 61
4.2 High-level Function Model . 61
4.3 Event Format . 63
4.4 Events Generated by the Correlation Engine Itself 65
4.5 Input Translation . 66

4.5.1 Line-based Input Rule Format . 66
4.6 Concepts . 67

4.6.1 Contexts . 67
4.6.2 Time . 68
4.6.3 Event Caching . 68

4.7 Rule Format . 68
4.7.1 Rule Groups . 69
4.7.2 Format of Individual Rules . 69
4.7.3 Rule Scoping . 78
4.7.4 Formal Specification . 78

5 Implementation 79
5.1 Preliminary Notes . 79

5.1.1 Additional Documentation . 79
5.1.2 Programming Language . 79
5.1.3 Dependencies . 80
5.1.4 Privileges . 80
5.1.5 Document Type Definitions . 80
5.1.6 Installation . 80

5.2 Top Level Packages . 81
5.3 The Package ace . 81

5.3.1 The Script ace . 82
5.3.2 The util Package . 82
5.3.3 The tests Package . 82
5.3.4 Master . 83
5.3.5 The RPC Server . 84
5.3.6 Events . 84
5.3.7 Queues . 84
5.3.8 Ticker . 85
5.3.9 Sources and Sinks . 86
5.3.10 Translators . 87

CONTENTS vii

5.3.11 Plugins . 88
5.3.12 Core . 88
5.3.13 Cache . 89
5.3.14 Context Manager . 89
5.3.15 Rule Manager . 90

6 Evaluation and Refinements 95
6.1 Functional Verification . 95

6.1.1 Unit Tests . 95
6.1.2 Event Balance . 95

6.2 Profiling . 95
6.3 Evaluation with Random Events . 96

6.3.1 Rule Execution Time . 96
6.3.2 Evaluation of the Cache . 97

6.4 Evaluation with Real-world Events . 101
6.4.1 Compression . 101
6.4.2 Changing Bursts to Start/End Signaling 101
6.4.3 Aggregation of Old Events . 101
6.4.4 Irrelevant Unique Events . 102
6.4.5 Flickering Detection . 102
6.4.6 Suppression of Dependent Events . 102
6.4.7 Complex Patterns . 103
6.4.8 Speed Considerations . 103
6.4.9 Real-time Testing . 104
6.4.10 Conclusions . 104

7 Conclusions and Outlook 105
7.1 Conclusions . 105
7.2 Outlook and Future Developments . 105

7.2.1 Rule Generation . 105
7.2.2 Central Rule Repository . 106
7.2.3 Automatic Rule Destination Selection . 106

A Notes on Measuring Event Rates 107
A.1 Sliding Window . 107

A.1.1 Memory Usage . 108
A.2 Fixed Window . 109

A.2.1 Memory Usage . 109
A.2.2 Comparison to the Sliding Window . 109

A.3 Fixed Window with Dynamic Start . 110
A.3.1 Memory Usage . 110
A.3.2 Comparison to the Sliding Window . 110

A.4 Stepping Window . 110
A.4.1 Memory usage . 110
A.4.2 Comparison to the Sliding Window . 111

A.5 Overlapping Stepping Windows . 112
A.6 Event Distance . 112

A.6.1 Memory usage . 113
A.6.2 Comparison to the Sliding Window . 113

CONTENTS viii

A.7 Dynamic Window . 113
A.7.1 Memory Usage . 113
A.7.2 Comparison to the Sliding Window . 113

A.8 Summary . 113

B XML Document Type Definitions and Examples 115
B.1 Events . 115

B.1.1 Document Type Definition . 115
B.1.2 Examples . 116

B.2 Line-based Input Translation . 117
B.2.1 Document Type Definition . 117
B.2.2 Examples . 117

B.3 Rules . 118
B.3.1 Document Type Definition . 118
B.3.2 Examples . 121

C Parameters and Configuration File Structure 132
C.1 ace Command Line Parameters . 132
C.2 ace Configuration File Structure . 132

D Assignment 134

E Schedule 140

F Presentation 142

G Acronyms 154

H CD-ROM Content Listing 158

Bibliography 158

List of Figures

2.1 Plot of all events during a month. 9
2.2 Plot of all events generated by a typical host throughout a month. 10
2.3 Histogram of the burst ratio of different hosts: Absolute numbers (top) and cu-

mulative distribution (bottom). 11
2.4 Plot of all active directory connection problem events. 11
2.5 Plot of all reboot events. 12
2.6 Cumulative distribution of the burst size of different event types. 12
2.7 Correlation between two event streams. 13
2.8 Correlation between two dependent event types. 14
2.9 Maximum correlation and offset among top 13 events. 15
2.10 Correlation across hosts and events on two mail servers. 17
2.11 Correlation across hosts and events on two other mail servers (please note that

the event types are not all the same ones as is Figure 2.10). 17
2.12 Correlation between event types in March. 18
2.13 Central Processing Unit (CPU) utilization over the time of six weeks, on a firewall

that generated ZEBRA:OVERLOAD events. 23

3.1 Simple Bayes network example. 42

4.1 Event correlation process. 62
4.2 Overview of a single event correlation node. 63

5.1 Updated correlation engine node diagram from Figure 4.2. 81

6.1 Event processing times with various numbers of relevant rules. 97
6.2 Event insertion times into a cache containing between 0 and 100’000 events. . . . 98
6.3 New (faster) insertion times for a cache using the blist data type. 99
6.4 Per event time to drop an event from the cache. 100
6.5 Memory usage of a cache containing between 0 and 100’000 events. 100

A.1 First three instances of a sliding window. 108
A.2 First three instances of a fixed window. 109
A.3 Fixed window with a dynamic start. 110
A.4 First three instances of a stepping window with three bins. 111
A.5 Problem case for the stepping window: The sliding window contains six events,

but no instance of the stepping window contains more than three events. 111
A.6 Two overlapping stepping windows with three bins each. 112

LIST OF FIGURES x

E.1 Initial project schedule. 141

List of Tables

2.1 Top five event types. 8
2.2 The five most active hosts. 8
2.3 Largest one-hour bursts on the most active hosts. 10
2.4 Top five event types in March. 16
2.5 Top five hosts in March. 18
2.6 Burst analysis with the data of March. 18
2.7 Correlation operations useful for correlation of the observed event patterns. . . . 28

3.1 Correlation matrix for the codebook example — problem vectors for A, B and C. . 40
3.2 Probabilities for vendor problems and an Internet Service Provider (ISP) outage. 42
3.3 Conditional probability distributions for a monitoring event and a pattern update

error event. 42
3.4 Advantages and drawbacks of the presented event correlation approaches. 46
3.5 Overview of event correlation software. 58
3.6 Event correlation capabilities of existing software. 58

4.1 Event record fields. 65
4.2 Internal event record fields. 65

5.1 Truth tables for the Boolean operations and, or and not with input values true,
false, undefined or defined. 93

A.1 Overview of rate measuring approaches. 114

Chapter 1

Introduction

This chapter discusses the task and its background, and gives a quick introduction to event
correlation. Furthermore, it explains some of the terms used throughout this thesis.

1.1 Background

This master thesis was realized at Open Systems AG, in collaboration with the Computer En-
gineering and Networks Laboratory (TIK), which is part of the Information Technology and
Electrical Engineering Department (D-ITET) at ETH Zurich.

1.2 Problem Statement and Setup

Open Systems operates more than 1500 hosts all around the world, which run services for Open
Systems customers, such as spam protection, firewalls or internet proxies.1

In order to notice problems as early as possible, log messages generated by the services are
automatically matched against a large set of signatures for known messages. If a log message
matches a signature, which identifies it as sufficiently significant, a new event with the log message
and a description of the matching signature is automatically created. Furthermore, an event is
also generated, if the log message matches no known signature at all. The generated events
then end up in the ticketing system of Open Systems (either as a new ticket, or appended to
an existing ticket, if a ticket for the sending host is already open), and are handled by a human
operator, who is responsible for investigating and resolving the problem.

In practice, a single problem often results in many generated events, which leads to complex
and large tickets, making it difficult for the operator to recognize the root of the problem. In
some cases, events are also generated, even though there is no problem at all (false positives),
which leads to unnecessary tickets.

As each ticket has to be handled manually, unnecessary or overly complex tickets waste
valuable time. On the other hand, overseeing an actual problem creates inconveniences for the
customer and might lead to a violation of the Service Level Agreement (SLA).

1A full list of services can be found at http://open.ch/en/services/.

http://open.ch/en/services/

1.3. TASK DESCRIPTION 2

1.3 Task Description

This thesis investigates the use of event correlation as a possible means to mitigate this problem.
As specified in the assignment (cf. Appendix D), a correlation engine will be presented, which
can process and correlate incoming events automatically and in quasi real-time, according to
rules specified in a suitable configuration language and dependent on the internal state as well
as on external information sources.

The goal for the correlation engine is to identify known event patterns, group, filter and
prioritize the events to make the tickets more readable, and ultimately, to take some of the load
off the operators.

1.4 Introduction to Event Correlation

Generally speaking, an event is simply anything, which happened at some moment in time. This
could be the ringing of a phone, the arrival of a train, or anything else, which happened. In
the context of computing, the term event is also used for the message, which conveys, what has
happened, and when it has happened. Examples here could be a message indicating, that a web
page was requested from a server, which is sent to the system log, a message, that a network link
is down, or a message, that the user pressed a mouse button, sent to the User Interface (UI).

The meaning of the term correlation becomes clearer, by inserting a hyphen at the right
place: we are looking for co-relation, i.e. for relations between different events. Event correlation
is usually done to gain higher level knowledge from the information in the events, e.g.

� to identify extraordinary situations,

� to identify the root-cause of a problem,

� or to make predictions about the future and to discover trends.

Various approaches for doing event correlation exist (the most important ones are discussed
in Chapter 3), and applications can be found in various areas, such as

� market and business data analysis (e.g. detecting market trends),

� algorithmic trading (e.g. making predictions about the development of a stock price),

� fraud detection (e.g. detecting uncommon use patterns of a credit card),

� system log analysis (e.g. grouping similar messages, and escalating important events)

� or network management and fault analysis (e.g. detecting the root-cause of a network
problem).

This short (and definitely incomplete) list already shows, that event correlation is a broad
topic, with numerous applications. In order to limit the volume of this thesis, we will discuss
event correlation mainly from the perspective of system log and network event analysis, largely
ignoring other applications.

1.5. TERMINOLOGY 3

1.5 Terminology

Throughout this thesis, the term service usually designates one or more server processes, that
perform some task for a client. Although on Transmission Control Protocol (TCP) level, a service
is usually associated with a port, served by some daemon, a more generic view is assumed here,
and a service may even be distributed among several hosts in some cases.

A daemon is a background process, which provides a service to local or remote users, or to
another program.

An incident is a temporarily abnormal situation, which requires attention. One or more
events may be generated for an incident, and an incident may stretch over multiple hosts.

1.5.1 False Positive and False Negative

A false positive is an event or alarm indicating an extraordinary situation, even though there
is no problem, e.g.

� a service is reported to be unavailable even though it isn’t,

� an email is classified as spam even though it is not spam.

A false negative is an event indicating that the situation is normal, even though there is a
problem, e.g.

� a service is reported to be available even though it isn’t,

� an email is classified as ham, even though it is spam.

If the healthiness of a service is checked and no event is generated, or a generated event
is later ignored, even though the service has a problem, this can also be considered as a false
negative, as no message is conventionally considered to signify, that there is no problem1.

On the other hand, if a problem is not reported, because there is no check covering that
problem at all, this should not be called a false negative, because there was no decision, which
could have resulted in a positive or negative answer (e.g. if a service does not produce any log
messages at all, then there are no false negatives). Reducing the number of false negatives does
not help in this case; the solution is simply to introduce new checks to cover the overlooked
problem.2

1.5.2 Event Correlation Terminology

As event correlation is a rather young research area (and an even younger area for marketing),
the terms are sometimes used ambiguously in research papers, and even more so in product
marketing. This thesis tries to follow the most widely used terminology.

An event source generates events. For this thesis, the syslog is often the event source; but
in a more general view, an event source can be anything from a hardware device (e.g. a sensor)
to a software process, or even a user.

An event sink receives events. In practice, an event sink could be a database to store the
events, a ticketing system, or some process, which takes further action, such as sending an email.

1This is generally the case under Unix; for instance, many command-line tools, such as rm, mount, mkdir, etc.
give no feedback, if the command was executed correctly

2This is however not a task for the correlation engine. This thesis is therefore more focused on genuine false
negatives, thus assuming, that there is at least some evidence for a problem, and the task is to interpret it
correctly.

1.5. TERMINOLOGY 4

A raw event (primitive event) is an event, which is generated by an event source, from
outside the correlation engine, for instance an event generated directly from a log message.

An input event is an event at the input of a specific correlation operation or of the correlation
engine itself. Conversely, an output event is generated at the output of a correlation operation
or of the whole correlation engine.

A compressed event is an event representing multiple identical events, but which does not
contain the individual events it represents.

A derived event (synthetic event) is an event, which was generated by the correlation engine
— e.g., because an event was generated during a given state of the correlation engine, because
a given set of events occurred, or because a given event was not generated for a specified time
(timeout event).

A composite event is an event generated by the correlation engine, which contains multiple
other events, e.g. raw, derived or composite events. A composite event usually represents some
information on a higher level.

The terms alarm and alert are used interchangeably in this thesis, and indicate a notification
about a situation, that requires attention.

For an explanation of event correlation operations, please refer to Section 3.2.

1.5.3 CEP and ESP

The two terms Complex Event Processing (CEP) and Event Stream Processing (ESP) can often
be found in the context of event correlation. Although the two concepts are related, and partially
overlapping, they are not the same. In [50], CEP is defined as “Computing that performs
operations on complex events, including reading, creating, transforming, or abstracting them”,
whereas ESP is defined as “Computing on inputs that are event streams”.

As a coarse rule of thumb, it can be argued, that ESP is focused more towards events streams,
with regularly generated events, whereas CEP is more concerned with irregularly generated
events.

A typical example for an ESP operation is the calculation of a moving average for the value
of a share from a stock ticker. For CEP on the other hand, an example is the identification of
the root cause for problems in a network, from multiple events indicating different symptoms.

1.5.4 SIM

The term Security Information Management (SIM) encompasses the collection, processing, stor-
ing and reporting of security information and events. Depending on the background, various
variants of the term SIM can be found, with varying definitions. In [40], the author explains:

There has been a vendor-fuelled explosion in acronyms around SEM, and you will
see them referred to variously as SEM, SIM, CSEM, CIEM, and ESM systems. All
of these perform broadly similar functions with differing scalability, utility, user-
friendliness, and price.

In this thesis, only the term SIM will be used.

1.5.5 Acronyms

A list of all acronyms used throughout this thesis can be found in Appendix G.

1.6. TYPOGRAPHY 5

1.6 Typography

A teletype font is generally used to designate script names, shell interaction, host names, vari-
ables and program code. Shell interaction is further designated by the $ sign (normal commands)
or by the # sign (root commands) at the start of the line. Values for an option or a parameter
are emphasized.

1.6.1 Host Names

The host names host-a, host-b, . . . host-z will be used for different, unrelated hosts, whereas
names like host-a-1 and host-a-2 will be used for different hosts belonging to the same cluster
(such as two hosts in a hot standby configuration).

Chapter 2

Event Pattern Analysis

In order to specify a correlation engine, it is necessary to know, what kind of event patterns
can be expected. To learn about possible event patterns, we therefore examined existing syslog1

messages and corresponding tickets from hosts operated by Open Systems.
To get a more representative overview, we examined a database dump of all log messages

generated during one month (a total of 58386 messages from 896 hosts, with 223 different event
types), rather than looking at incoming messages in real-time, as the finished correlation engine
will.

Since the examined messages are exclusively messages, which ended up in a (new or existing)
ticket, each log message is also an event. The opposite is for the moment generally also true,
as only raw events are considered. The two terms are therefore used almost interchangeably,
although the term event is preferred in some cases, to suggest generality.

We did the analysis in this chapter with Python, using SciPy and IPython.2 The mentioned
scripts can be found on the CD-ROM under /log analysis/.

In the first two sections of this chapter, the logs will be analyzed with a data-mining approach,
in the hope to learn more about event statistics, event patterns and dependencies between event
types and hosts. The goal of this automated analysis is to get an overview of the data and
to find event patterns. It should be noted, that this is a different goal than the one for the
correlation engine (which will analyze events in real-time, rather than using collected data), and
it is unlikely, that the approach taken here will be suitable later.

2.1 Statistics

As the number of examined events is quite large, it is reasonable to do some automated analysis,
before looking at specific events in detail and identifying possible event patterns manually. In this
section, the statistics of the log messages are analyzed, and a look from a high-level perspective
is taken.

1Syslog is a protocol used to convey system log messages on a network. Although many different implementa-
tions exists, a specification can be found in Request For Comment (RFC) 3164 [49].

2SciPy (available at http://scipy.org) and IPython (available at http://ipython.scipy.org) are libraries
and an advanced shell for Python, which allow the use of Python in a similar fashion as how one might otherwise
use products like Matlab.

http://scipy.org
http://ipython.scipy.org

2.1. STATISTICS 7

2.1.1 Database Dump Format and Event Type Names

Conveniently, the database dump not only contains log messages, but also additional information,
as well as information extracted from the log messages. The most interesting parameters of a
given event are:

� Short name (name of the signature, which matched the log message)

� Host name (name of the host, which generated the log message)

� Message time (date and time, when the event was generated)

The short name is in general a name for the regular expression that matched the log message.
Short names have the format [A-Z][A-Z0-9-]+(:[A-Z0-9-]+)+ and they usually specify the
service or protocol layers and the problem or notification carried in the matched log message. As
an example, the short name NIC:ETHERNET:LINKUP indicates that an Ethernet Network Interface
Controller (NIC) link was activated.

The meaning of the short names is however not strictly specified. In some rare cases, a short
name stands for a set of log messages, which haven’t been broken up more finely, and in a few
cases, a simple form of log processing is already done, and a short name may stand for more
than one message. These mechanisms are however used very defensively at the moment, and no
events of these types were generated in the month under scrutiny.

As the short names already designate classes of events, they can be used as event types. This
also saves a lot of work, as the classification done by the Open Systems engineers can be used,
rather than trying to classify thousands of log messages in an own scheme. Although the final
event correlation engine may well use a different classification, the existing classification can be
very helpful to identify event patterns.

A lot more information is available in the database dump, and also in the log message itself,
such as the time the message arrived at the database, the syslog severity and facility, etc. As
the goal is to get a high-level overview, this information is however ignored for the moment.

2.1.2 Most Frequent Event Types and Most Active Hosts

As already mentioned, there was a total of 58386 message that arrived in the month under
scrutiny, or in other words an average of no more than 1-2 messages per minute. While this
is quite a low value, the short-term load can be significantly higher, as the messages arrive in
bursts.

First, it is interesting to see, which types of events are generated most often, and how many
different hosts generate events of a given type. To answer this question, we wrote a small Python
script called logstats.py.

Table 2.1 shows the five event types that occurred most often, along with the number of
events and the number of different source hosts for each type. Although this is of minor concern
at the moment, a short description of the event types is also given. The number of events in
the top five sums up to 29831, which is slightly more than half of all the generated events. This
suggests, that even with only a few correlation rules, the number of events could be significantly
reduced. Reducing the number of events does not necessarily mean, that the number of tickets
is reduced, as a lot of events might have ended up in the same ticket anyways1. Simple event
compression may therefore not be too helpful for human operators, as their load depends much

1This is especially true in the case of the HSP:MESSAGE:UNKNOWN:CRITICAL event, where more than 6000 of the
8612 events were generated by the two most active hosts. As there were tickets with up to around 1000 events,
there were actually only rather few tickets with HSP:MESSAGE:UNKNOWN:CRITICAL events.

2.1. STATISTICS 8

Event type Messages Hosts Message description
WINBIND:CONF:ADCONN 12082 42 There was a problem when trying to

connect to an Active Directory server.
HSP:MESSAGE:-
UNKNOWN:CRITICAL

8612 10 One of various HTTPS proxy messages.

SES:RPROXLOGD:LOCK 3558 14 There was a problem starting a log dae-
mon for the reverse proxy, because of an
existing lock file.

MAIL:FRESHCLAM:ERROR 3261 37 An error occurred when trying to up-
date the AntiVirus signatures.

NIC:ETHERNET:LINKUP 2318 220 An Ethernet NIC link was activated.

Table 2.1: Top five event types.

more on the number of tickets, than on the number of events. Still, a few simple compression
rules at the input can certainly reduce the processing load for the rest of the engine.

A look at the corresponding tickets suggests, that a lot of the events were generated because
of simple problems, such as problems with the connectivity, ISP outages, or in some cases power
failures resulting in reboots. Since a certain degree of instability of internet and power providers
has to be expected in some countries, and short outages may be acceptable on a non-critical
server, a lot of these events could be ignored as long as they do not exceed a certain measure.

A similar analysis as for the event types can also be done for hosts. Table 2.2 shows the most
active hosts (the host names have been anonymized).

Host Number of Events Number of Event Types
host-a 3863 5
host-b-1 3676 9
host-b-2 2635 8
host-c 1996 23
host-d 1869 9

Table 2.2: The five most active hosts.

The five most active hosts generated 14039 events, which is about 24% of the total. What
is noteworthy is that even when a host generates many events, there are often only very few
different event types.

2.1.3 A Graphical Look at the Events and Event Bursts

In a next step, a graphical look at some plots of the events is taken, to get a better feeling for
the message patterns.

To be able to treat the event streams as signals, the number of events of each type during
a given time is counted and used as a measure of “signal strength”. Although the log messages
have time stamps with a resolution of one second, the number of messages arriving in one minute
has commonly been counted, because the log time is not usually precise down to one second, and
because too few messages arrive (which would also make a plot rather boring, as in any given

2.1. STATISTICS 9

Figure 2.1: Plot of all events during a month.

second, usually zero or one messages arrive). Choosing a lower resolution will also considerably
lower the processing effort, when the correlation is calculated later.

Figure 2.1 shows a plot of all events from any host during the observed month. What should
be noted is that the events arrive in bursts, rather than continuously. This is not unexpected,
as one problem often generates a multitude of events, but it has several implications for the
implementation of a suitable correlation engine, such as that the engine must be able to cope
with event rates much higher than the average event rate. The plot shows, that in some cases,
several hundred events per minute were generated (whereas the average is less than two events
per minute).

When looking at all events generated by a single host, it can be seen even better, that the
events are generated in bursts. Figure 2.2 shows all events generated by one host. This particular
host generated 909 events during the whole month. It is not uncommon, that there are only a
few bursts of events and a large part of all events by a given host is generated in a short time.

To get an idea of the “burstiness” of an event stream, we can ask, what percentage of all
events arrived in the largest burst of a given time. Using the script analyze bursts.py with
a sliding window of one hour, we answered this question. Table 2.3 shows the results for the
five most active hosts. In average (across all hosts), a host generated 63.5% of all messages of
a month during its most active hour (the standard deviation is ±31.7%). This result may be
slightly biased because of hosts that generated only few messages, as for instance for a host that
generated only one message, it is inevitable that 100% of all messages were generated within a
window of one hour. Considering only hosts that generated at least 100 events yields the slightly
lower number of an average of 58.0%, with a standard deviation of ±31.5%. For a more detailed
insight, Figure 2.3 shows a histogram of the burst ratios of all hosts, as well as the corresponding
cumulative distribution.

Doing the same analysis for different event types instead of hosts results in more varied results,
i.e. the “burstiness” depends strongly on the event type. The most frequent event, which signifies

2.1. STATISTICS 10

Figure 2.2: Plot of all events generated by a typical host throughout a month.

Host Events in total Events in largest burst Ratio
host-a 3863 3686 ≈ 95%
host-b-1 3676 1544 ≈ 42%
host-b-2 2635 1109 ≈ 42%
host-c 1996 1410 ≈ 71%
host-d 1869 1798 ≈ 96%

Table 2.3: Largest one-hour bursts on the most active hosts.

problems with the connection to an active directory server, clearly occurs in bursts, as shown in
Figure 2.4. Other events, such as reboots, usually occur one at a time, as can be seen in Figure
2.5 (however, some bursts occurred for reboots as well – a possible reason could be a power
outage at a site with many hosts).

Looking at the percentage of messages sent during the largest one-hour bursts reveals an
average of 46.4% with a standard deviation of 35.6%. Considering only event types with 100 or
more events again leads to a smaller number, 24.1% with a standard deviation of 27.4%. This
makes sense, as events of one type are usually generated on many independent hosts. Even
though events may still be generated in bursts, there may be many independent bursts from
different hosts for a given event type. Figure 2.6 shows the cumulative distribution of the burst
ratios of different event types, i.e. each bar shows on the y-Axis, how many event types there are,
which a had largest burst (relative to the total number of events of that type), that is smaller or
equal to the percentage value on the x-Axis. It is obvious that all event types had at most 100%
of their events in the largest bursts (i.e. the y-value for x = 100% is the total number of events),
and (since only event types with at least one event were counted) that no event type had zero
events in the largest burst (x = 0%⇒ y = 0).

2.1. STATISTICS 11

Figure 2.3: Histogram of the burst ratio of different hosts: Absolute numbers (top) and cumu-
lative distribution (bottom).

Figure 2.4: Plot of all active directory connection problem events.

2.1. STATISTICS 12

Figure 2.5: Plot of all reboot events.

Figure 2.6: Cumulative distribution of the burst size of different event types.

2.2. A FIRST LOOK AT CORRELATION 13

2.2 A First Look at Correlation

2.2.1 The Naive Correlation Approach

The first naive correlation approach is to simply treat each event stream as a signal in time and
look at the correlation between pairs of event streams across different time shifts.

A signal x[t] indicates, how many log messages for event type x were generated at the time
t. The correlation between two time discrete signals x[t] and y[t] is defined as

c[t′] =
N∑

t=0

x[t]y[t + t′], t′ ∈ [−W, W]

where t′ is the time shift, W is the correlation window and N is the length of the signal (values
outside the signal are defined as zero). As the time shift is added to y[t], a correlation with a
positive shift indicates, that y[t] is delayed with respect to x[t].

For the moment, the analysis is done without distinguishing between different source hosts,
although this is certainly a refinement that should be implemented later.

Since some log messages are generated at a much higher rate than others (even if the problem
exists for the same amount of time), it is useful to normalize each stream, such that the signal
energy

E =
N∑

t=0

|x[t]|2

is one.
This experiment is implemented in correlate events.py. Figure 2.7 shows the correlation

between the two event types WINBIND:CONF:ADCONN and SES:RPROXLOGD:LOCK. From the plot,

Figure 2.7: Correlation between two event streams.

it looks like there is a strong correlation at a time shift of -16392 minutes. Unfortunately, this
makes absolutely no sense — it is rather unlikely that events of the types SES:RPROXLOGD:LOCK
(lock file problems) are somehow related to events of the type WINBIND:CONF:ADCONN (Active
Directory connectivity problems) eleven days later, and the correlation between these two event
types (which have been deliberately chosen to be unrelated) should be more or less zero.

2.2. A FIRST LOOK AT CORRELATION 14

The problem is that when all hosts are treated as a combined event stream, large bursts of
events in the two streams will always look like correlation. It is therefore necessary to treat each
host separately. This will of course only allow us to detect correlation between events on the
same host. Correlation of events between events on different hosts will be examined separately,
later.

2.2.2 Per-Host Correlation Across Event Types

In order to correlate each host separately, the event streams can be considered as a two-
dimensional discrete signal x[t, h], which indicates, how many events of type x were generated
by host h at time t. The correlation between x[t, h] and y[t, h] is then

c[t′] =
N∑

t=0

H∑
h=0

x[t, h]y[t + t′, h], t′ ∈ [−W, W]

where t′ is the time shift, 2W is the length of the correlation window, N is the length of the
signal and H is the number of hosts. This means, the correlation is still done only in time and
across event types, but for each host separately, and the result is summed up across all hosts
(which reflects the assumption that hosts are independent, but that the correlation between two
given event types is similar on each host).

The script correlate events.py was extended to implement this new approach. As a
result, correlation between SES:RPROXLOGD:LOCK and WINBIND:CONF:ADCONN is now zero ev-
erywhere, as one would expect1. Figure 2.8 shows the correlation between two other event
types, HOTD:SYNC:DUPLICATEMASTER (which indicates that there are two master hosts in a hot
standby configuration) and NETWORK:IP:ADDRESS:THEFT (which indicates a duplicate Internet
Protocol (IP) address in the network) with a time shift window of 10 hours. The plot clearly

Figure 2.8: Correlation between two dependent event types.

shows that there is a strong correlation between the two event types, for a time shift close to
1For performance reasons, hosts that did not generate at least one event of both correlated event types

are ignored. As the set of hosts which created SES:RPROXLOGD:LOCK events and the set of hosts which created
WINBIND:CONF:ADCONN events are disjoint, a calculation is not even done by the script in this case.

2.2. A FIRST LOOK AT CORRELATION 15

zero. This is of course not surprising – if a hot standby slave becomes master, while the master
is still active, both use the same IP address, and the IP address theft event is generated.

The most interesting results of the correlation analysis are the maximum value for the corre-
lation and the corresponding time shift, i.e.

max c(t′) and argmax
t′

c(t′)

If we focus on these two results only, rather than looking at each event type pair separately, all
event types can be plotted in one matrix. This mode has been implemented in correlate -
events.py. Figure 2.9 shows the corresponding matrix with the correlation between the 13
most frequent events types (all event types with at least 1000 events) within a time window of
60 minutes. The size of the dots indicates the correlation, and the color is used as an additional
dimension to visualize the time shift. As the correlation is symmetric, only one direction has
been calculated. The correlation of an event type to itself is of course always one at shift zero;
these calculations are also omitted in the plot. A larger version with a matrix for all event types

Figure 2.9: Maximum correlation and offset among top 13 events.

with more then 100 generated events can be found on the CD under /log analysis/results/.
Although the results clearly show correlation between some event types, it should be noted

that correlation does not imply causality. As seen at the beginning of this chapter, the correlation

2.2. A FIRST LOOK AT CORRELATION 16

may simply be random, e.g. because of large bursts, or it is possible that two event types are
correlated because of an unknown third factor, which induces events of both types. Even if there
is causality between two event types, automated analysis can not tell us why there is causality,
and in which direction. For these reasons, event patterns cannot be derived directly from the
correlation results. However, the results will certainly be helpful in identifying event patterns
manually.

2.2.3 Correlation Across Event Types and Hosts

While most hosts are independent, there are some cases where it is interesting to see the cor-
relation between (different as well as the same) event types across two hosts. For instance, if
two hosts are used in a hot standby configuration, some events are expected to be correlated, as
when one host has a problem, the other is supposed to become active.

Figure 2.10 shows the correlation across event types and hosts on two mail serves in a cluster
(all event types with at least four events on the two host are shown). For comparison, the analysis
was also done on two other mail servers. Figure 2.11 shows the results.

The main problem, that can be seen on these four hosts, is an occasional failure when updating
the anti-virus signature patterns. The finding, that the problem usually occurs on both hosts
in a cluster simultaneously, is not surprising, because the problem is often caused by a common
external factor, such as a temporary unavailability of the update hosts.

2.2.4 Comparison to Another Month

To assess the stability of the results, they can be compared to the results with data of the
following month, March.

In March, 39210 events were generated by 680 hosts, with 201 different event types. The
statistics for the top five event types look quite similar to the previous month; again, the top
five event types (listed in Table 2.4) contain more than half of all messages.

Event type Number of messages Number of hosts
HSP:MESSAGE:UNKNOWN:CRITICAL 6079 7
WINBIND:CONF:ADCONN 5996 30
TMON:RRD:ERROR 4269 26
SES:RPROXLOGD:LOCK 3344 12
MAIL:FRESHCLAM:ERROR 2870 41

Table 2.4: Top five event types in March.

Table 2.5 shows the five most active hosts. Although the hosts are different ones than in the
previous month (except for the two hosts host-b-1 and host-b-2), the number of events per
host is comparable.

Again, the “burstiness” can be analyzed, by asking for the relative size of the largest one hour
burst. This yields the results shown in Table 2.6. While the numbers are generally smaller than
for the previous month, the relative statements still hold, namely that the events on a specific
host are generated in bursts, whereas the events of a given type are generated more continuously.
Again, the results without a threshold of at least 100 generated events have a limited validity,
and should be taken with a grain of salt (for the same reasons as explained in Section 2.1.3).

Looking at the correlation between different event types yields the picture shown in Figure
2.12 (the same event types as in Figure 2.9 were chosen, to allow a comparison). The main

2.2. A FIRST LOOK AT CORRELATION 17

Figure 2.10: Correlation across hosts and events on two mail servers.

Figure 2.11: Correlation across hosts and events on two other mail servers (please note that the
event types are not all the same ones as is Figure 2.10).

2.2. A FIRST LOOK AT CORRELATION 18

Host Number of Events Number of Event Types
host-b-1 3827 10
host-b-2 2658 11
host-e 2234 7
host-f 1749 9
host-g 976 6

Table 2.5: Top five hosts in March.

Description Average relative size Standard deviation
Largest one hour burst on a host 57.0% 33.2%
(hosts with at least 100 events only) 39.9% 31.6%
Largest one hour burst of a given event type 48.3% 36.0%
(event types with at least 100 events only) 19.5% 27.3%

Table 2.6: Burst analysis with the data of March.

Figure 2.12: Correlation between event types in March.

difference is that there were no NETWORK:PROXYARP:CONFUSION events in March. Otherwise,
the picture looks similar to the one from February, even though the values for the correlation

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 19

coefficients (indicated by the size of the dots) differ in some cases.

2.3 Identification and Classification of Event Patterns

With the results of the analysis from the previous sections in mind, event patterns can now be
identified. In the following sections, the most common patterns will be discussed. The discussion
starts with the simpler cases involving events from a single host, and later moves on to more
complex cases, including event patterns involving events from multiple hosts. The focus lies on
patterns that are relevant for the correlation engine, i.e. patterns with automatically generated
events, that need to be (pre-)processed by the correlation engine.

Some strategies to deal with each event pattern will be suggested throughout this chap-
ter; they are for the moment however (intentionally) rather generic and fuzzy. A more formal
specification of the possible correlation operations will be presented in Chapter 4.

Although the patterns are split into groups, this does not mean, that each pattern belongs
to exactly one group. Most of the patterns can be assigned to more than one group, and it is
likely that even in the finished correlation engine, there will be more than one way to deal with
a given pattern.

The effort to identify the patterns presented in this section was greatly supported by feed-
back from various Mission Control engineers. Their well-thought-out suggestions and comments
provided valuable input, for which I would like to express my gratitude.

2.3.1 Preliminary Remarks

2.3.1.1 Event Flow

Although the design of the correlation engine is not yet specified, a general idea already exists,
and should be kept in mind throughout the rest of this chapter.

As already specified in the task description (which can be found in Section D), the correlation
engine should work in a distributed fashion. The events are generated on hosts distributed all
around the world. On the source hosts, a first correlation step can already be made, with the
information available there. The preprocessed events are then forwarded to a central host for
further processing and correlation. Finally, the correlated events end up in tickets. Although two
correlation steps are assumed here, a correlation in more than two steps is imaginable. Generally,
it will be assumed throughout the rest of this chapter, that the correlation process at least forms
a directed graph, i.e. each host forwards events towards a central host.

Whether a correlation step should be made at the source or at a central host is not always
clear. Obviously, the central host has to handle a lot more events than the source hosts, as each
source host is responsible only for its own events. The source host should therefore compress
events if possible, and pre-process them as much as possible. On the other hand, accessing
external information (such as the log of ISP outages1) is easier from a central host.

2.3.1.2 Low-level Signaling Schemes

On a very basic level, two signalling schemes can be distinguished:

� An event is sent when a problem first occurs, and another one when the problem is resolved
(up/down events).

1At Open Systems, the connectivity to the hosts is monitored from a central location, and all connection
problems are logged. The connection statistics are therefore available independently of the events generated at
the individual hosts.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 20

� As soon as a problem occurs, events are sent continuously, until the problem is solved
(repeated problem events). The event rate can range from a few events per hour to multiple
events per second. Often, the event rate does not contain any information, i.e. events are
sent at a defined, fixed rate.

Obviously, both methods have its advantages and drawbacks. The most obvious advantage
of up/down events is that they generate less traffic. Indeed, four of the five most frequent events
listed in Table 2.2 are events, which are repeatedly sent (only NIC:ETHERNET:LINKUP is of the
up/down type). On the other hand, if events are sent as long as the problem exists, the danger
of overlooking the problem is smaller.

While it is disputable, which signaling scheme is preferable in which case, it should be stressed,
that it is important that the correlation engine is able to tell, when a problem begins and ends,
in both cases. This means, that the following information is crucial:

� In the case of up/down events, the correlation engine must have the information, which
events form a pair, and which event in a pair indicates the everything-fine state1.

� In the case of repeated problem events, the correlation engine should know, how long after
the last event, the situation can be considered normal again.

If this information is available, the two signaling schemes are for most purposes exchangeable
(some differences of course remain, e.g., rate measuring is not possible, when up/down signaling
is used).

2.3.2 Multiple Identical Events for a Persistent Problem

One of the most common sources for large quantities of events is a process, which continuously
sends log messages, as long as the problem persists, i.e. a process using the repeated problem
event signaling scheme explained in the previous section.

2.3.2.1 Practical Examples

As an example, if a host detects that another host is trying to use to same IP address, the
NETWORK:IP:ADDRESS:THEFT event is in some cases generated at a rate of up to two events per
second (in this case, the event rate does not contain any information).

2.3.2.2 Possible Solutions

One solution would be to compress the events, i.e. rather than forwarding 100 messages saying
that event X occurred, the correlation engine (on the source host) should forward only one
message, saying that event X occurred 100 times. This would of course require, that the first
event is delayed for a defined time, to see whether more events of the same type are generated.
If this is not acceptable, an alternative solution would be to forward the first event and then
suppress or compress the following events for a given time.

Another solution would be to forward an event only if a defined threshold for the event rate
(or for the event count) is exceeded, e.g. at least 20 events in 5 minutes2. Of course, this only

1With the naming scheme used at Open Systems, this information is partially contained in the semantics of
the names, as most event pairs consist of some X:Y:DOWN and a corresponding X:Y:UP event (which is usually the
default state). This is however currently not formally specified, and there are some exceptions, such as the event
pair NURSE:PROXYTEST:ALERT and NURSE:PROXYTEST:OK.

2The term event rate is used as a generic term throughout this section. Appendix A discusses the different
approaches to measuring it.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 21

makes sense, if the event rate actually contains some information (in many cases, events are sent
at a fixed rate, rather than a rate which indicates the frequency or magnitude of a problem).

Finally, the signalling could also be changed to the up/down scheme, by forwarding a cor-
responding up event, when the first input event occurs, and a down event when no more input
events occurred for a given time.

2.3.3 Old Events

If a host loses its connection to the internet, events can not be forwarded, and events may be
accumulated over a long period.

2.3.3.1 Possible Solutions

In order to avoid the creation of multiple tickets for old problems, old events could be forwarded
as one composite event, if the accumulation time exceeds a certain value (e.g. if an event older
than a day arrives, wait 10 minutes and if more old events from the same host arrive, create a
composite event).

2.3.4 Late Events for Closed Tickets

If a new event occurs for a host with a ticket, that is open or has been closed a short time ago,
the event is appended to the existing ticket, and the ticket is reopened if it was closed.

Although this behaviour generally makes sense, it can be annoying in some cases, e.g., if a
late event arrives for an already solved problem.

2.3.4.1 Practical Examples

An example is the NURSE:SERVICE:DOWN event, which indicates a problem with a service. In
the ideal case, an operator looks at the corresponding ticket, solves the problem and closes the
ticket. However, sometime later, a corresponding NURSE:SERVICE:UP event for the fixed service
will be generated. Although this only indicates, that the situation has gone back to normal, the
ticket is reopened, and has to be closed again manually.

2.3.4.2 Possible Solutions

Rather then reopening the ticket if the situation goes back to normal, it would make sense to
generate an alert if the “return-to-normal event” is not generated. To achieve this, the correlation
engine should have some way to affect the presentation in the ticketing system. One possibility
would be to forward events as either “active” or “inactive”, with only “active” events having the
possibility to reopen tickets. Additionally, a timeout operation is needed to allow the reopening
of the ticket, if the situation does not go back to normal in due time.

2.3.5 Irrelevant Unique Events

Some events can be ignored, if they are generated only once1.
1Ignored should be read as “ignored by the operator” in this context. It may still make sense to forward the

event for logging, and possibly for the creation of a new, but already resolved ticket.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 22

2.3.5.1 Practical Examples

As seen in Section 2.2.3, it sometimes happens, that the anti-virus signature patterns can’t be
updated, for instance because of an ISP outage, or because the update servers are unavailable.
Whenever this happens, an event is generated. If the problem occurs only once, this can be
ignored, as the patterns will be updated the next time the host tries (e.g. one hour later).

2.3.5.2 Possible Solutions

The obvious solution is to introduce a rule to forward an event only if it occurs at least N
times in a row (the separation between events in a row and isolated events requires either a
timeout or an event specifying that the situation is normal again after an error). Additionally
(or alternatively), a rule to specify a rate threshold might be used.

2.3.6 Flickering Services

Sometimes, a problem is only temporary, and it disappears by itself, after a short time. Often,
this repeats itself later, leading to continuous short service outages, similar to the flickering of
a light bulb, that is connected to an unreliable power source. This flickering may last for some
minutes, hours or even days.

Such a behaviour is often caused by external factors, that can not be fixed. As each short
outage leads to new events and to a new, or newly reopened ticket, this pattern is particularly
annoying.

2.3.6.1 Practical Examples

A common example are problems caused by temporary internet outages. Unstable ISPs some-
times produce multiple subsequent outages within a short time frame. Such outages can result in
multiple event pairs, such as VRRP:MONITOR:VPN:DOWN events followed VRRP:MONITOR:VPN:UP,
or temporary event bursts, such as the WINBIND:CONF:ADCONN error.

As another example, a servers CPU may sometimes be temporarily overloaded (resulting for
instance in ZEBRA:OVERLOAD events, which indicate slow Zebra threads). In order to permanently
fix the problem, more resources would have to be added to the system, but this may not always
be possible or desirable (as an example, a weekly backup may simply transfer data as fast as it
can be handled, and adding more hardware would only speed up the backup process, but not
prevent events indicating that the CPU is used to full capacity).

2.3.6.2 Possible Solutions

For events that can be (but not necessarily are) caused by ISP outages, the answer is simple:
Since the connection statistics are accessible to the correlation engine, the engine can simply
check, if there was an ISP outage at the time, when the event was generated. If there was an ISP
outage, and the service in question is up again (since the service cannot send any events when
there is no internet connection, the up event often arrives shortly after the down event, so a long
delay is not necessary for the correlation), the events could be appended to the ticket for the ISP
outage (if there is one — whether a ticket for an internet outage is created depends on how long
the outage lasted), or a newly ticket that is already resolved, could be created. To facilitate the
handling of ISP outages, it would be interesting to allow the specification of generic acceptable
outage durations and rates for different scopes, e.g. on country and host level. Specifying both
a limit for the duration and the rate (e.g. at most 3 ISP outages per day, each one not longer
than 5 minutes) is advisable, as a serious problem might otherwise be overlooked.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 23

More generally, event patterns of flickering services can usually be handled with a set of
conditions (which may be country, company or even host specific), which describe the required
circumstances to resolve tickets automatically. For transparency, the correlation engine should
clearly state in the ticket log, which conditions were required to resolve the ticket, and how they
were fulfilled.

In the case of the ZEBRA:OVERLOAD events, the conditions could be that the events occurred
in a specified time window, and that the situation was back to normal after a given time. Besides
backups, the regular load caused by users can also lead to ZEBRA:OVERLOAD events. These events
are therefore often generated during workdays. As can be seen in Figure 2.13, the CPU load is
indeed quite high during workdays, with peaks on a more or less fixed time. In the case of a

Figure 2.13: CPU utilization over the time of six weeks, on a firewall that generated
ZEBRA:OVERLOAD events.

permanently high load caused by users, ignoring the resulting events is of course no solution. In
this case, an upgrade of the responsible hardware may be necessary.

2.3.7 Dependencies Between Services on a Host

A single failure of a component (soft- or hardware), can result in problems with other components
on the same host. This is the case, whenever there are dependencies between components and/or
services. An incident can then result in problems not only with the directly affected service, but
also with dependent services, leading to events from many services. This is often called an event
storm.

In a simple case, there may be only two event types. The pattern would then look like this:

1. Event X:DOWN occurs

2. Event Y:DOWN occurs

3. The problem causing event X:DOWN is solved

4. Events X:UP and Y:UP occur

A more complicated case might look something like this:

1. Event A:DOWN occurs

2. Events B:DOWN and C:PROBLEM occur (caused by A:DOWN)

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 24

3. Event D:DOWN (caused by B:DOWN) and more C:PROBLEM events occur

4. The problem causing event A:DOWN is solved

5. All problems are solved: A:UP, B:UP, D:UP; no more C:PROBLEM events

In this example, there is more than one level of dependencies, and the problem propagates through
all levels. An even worse scenario is the case, where the A:DOWN event is not even generated, i.e.
the root problem is not noticed. Another complication is that it is not at all guaranteed, that
all dependent services will come back automatically, once the root problem is solved.

2.3.7.1 Practical Examples

The previously mentioned HOTD:SYNC:DUPLICATEMASTER event, followed by NETWORK:IP:AD-
DRESS:THEFT events is a practical example for the simple pattern described above.

Another simple example is the update of anti-virus signature patterns and the accessibility
of Domain Name Service (DNS) servers. If domain name resolution is not possible, the host of
the signature pattern provider can not be found, and the patterns can not be updated (even if
the internet connection otherwise works).

Obviously, the ISP outage itself is once again a common example as well, as most services
depend on a working internet connection.

A last example is the failure of any hardware component, as the correct function of software
usually depends on correctly working hardware (unless there is redundant hardware). A possible
problem is a failing hard disk. Hard disks generally have a limited lifetime and occasional failures
are hard to avoid, especially in an unfriendly (e.g. hot) environment1. A hard disk failure may
be reported (e.g. with a KERNEL:IO:FAILURE event), or it may simply result in unpredictable
behaviour and failure of services, without any direct notification.

2.3.7.2 Possible Solutions

In this case, the goal for the correlation engine is to identify the root cause, and forward the
events in a structured fashion, e.g. as a composite event. Additionally, the correlation engine
should track events from dependent services, and generate an alarm if the dependent services do
not come back automatically, once the root problem is solved.

Unfortunately, simply assuming, that the first event is the root-cause, is unlikely to work, as
some events may be delayed (e.g. because the events are generated by periodic checks, which are
executed at different times). As an additional complication, the root-cause is not always noticed,
and an event for the actual problem may not be generated (e.g. in the case of a hardware
problem).

A possible solution is to specify the dependencies for each service. If a service is not working,
and a dependency is not fulfilled (e.g. anti-virus signature patterns can not be updated, and no
DNS server is reachable), the source of the problem is found (more exactly, one problem source
– it is of course possible, that there was more than one cause). In some cases, it might also
be useful, if the correlation engine actively checks, whether the dependencies are fulfilled (even
though strictly seen, this is outside the scope of a correlation engine).

Hardware problems are a more difficult case. Even for a human operator, it is rather difficult
to infer a hardware problem from high-level service failures. While it would be possible to specify
dependencies on hardware, there is no easy way for the correlation engine to verify, whether the

1Even in a Redundant Array of Inexpensive Disks (RAID), a simultaneous failure is possible, e.g. due to an
intensive power spike. Additionally, using a RAID may simply not be cost-effective for some hosts.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 25

hardware is working. The correlation engine might still be used to at least give hints about
possible hardware failures (e.g. if multiple service failures, which are often related to hard disk
problems, occur), but it is doubtable, whether the small probability of helpful hints justifies the
effort – particularly as the correct functioning of the correlation engine itself can not be assumed
in the presence of a hardware problem.

2.3.8 Events Caused by Problems on Another Host

In some cases, an event can be caused by a problem on another host.

2.3.8.1 Practical Examples

An example frequently mentioned by the interviewed Open Systems engineers is the TMON:VPN:UP
event, which indicates that a Virtual Private Network (VPN) tunnel was established, which was
previously down. On two hosts, this event is quite frequent, because these two specific hosts are
VPN termination points for backup satellite links, i.e. whenever a remote host with a backup
satellite link loses its primary connection, a VPN with one of these hosts is created.

Another type of event, that often falls into this category, is the MAIL:SYNC-MAILDIR:ERROR
event. A MAIL:SYNC-MAILDIR:ERROR event indicates, that a host responsible for spam protection
was unable to fetch email addresses from a protected mail server. This is often caused by a
problem (e.g. ISP outage) at the protected mail server. As there are in some cases a lot of hosts,
from which the email addresses have to be fetched, it is not surprising, that once in a while, one
of them is unreachable. A single error can usually be ignored.

2.3.8.2 Possible Solutions

In the first example, the solution would be the correlation of TMON:VPN:UP events with the ISP
outages at the remote end of the VPN connection.

More generally, it should be possible to specify a set of conditions to resolve events, similarly
to handling flickering services, but including conditions (especially ISP outages) on remote hosts.

Concerning the second example: As the connectivity of the protected mail server is usually
not monitored, a connectivity test would have to be made actively. As the MAIL:SYNC-MAILDIR:-
ERROR event usually already implies connectivity problems, an alternative solution might be the
same one as in Section 2.3.5 — the event is ignored, if it happens only once in a row.

2.3.9 Mutual Dependencies Between Hosts

Whenever there are two hosts in a cluster, e.g. two hosts in a hot standby configuration, there
are dependencies between the two hosts.

2.3.9.1 Practical Examples

As an example, let’s consider two redundant routers and an ISP outage on the primary router.
In this case, the following events will be generated (in three different tickets):

� A notification about the ISP outage on the primary router.

� A VRRP:MONITOR:VPN:DOWN event on the primary host, indicating that the VPN tunnel is
down.

� A KEEPALIVED:TRANSITION:SLAVE event on the primary router, indicating that this host
can no longer provide the service.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 26

� A KEEPALIVED:TRANSITION:MASTER event on the secondary router, indicating that it has
taken over the service.

Later, when the situation goes back to normal, the following events should be seen:

� A VRRP:MONITOR:VPN:UP and a KEEPALIVED:TRANSITION:MASTER event on the primary
router.

� A KEEPALIVED:TRANSITION:SLAVE event on the secondary router.

2.3.9.2 Possible Solutions

Firstly, related events should end up in the same ticket. This can be done simply by checking,
whether a ticket for a related host is already open, before opening a new ticket. This requires of
course, that the information about relations between hosts is available to the correlation engine.

Secondly, the correlation engine should check, whether everything is fine again in the end,
specifically, whether there is exactly one master and one slave after a transition. This essentially
requires, that the logic of the interaction of the two hosts can be represented in the correlation
engine, e.g. as a simple Finite State Machine (FSM).

Finally, if the cause for the transition is known (e.g. there was a transition and an ISP outage
was detected on the primary host at the same time), the correlation engine could resolve the
ticket.

2.3.10 Location Dependent Relations

As some problems are caused by environmental factors, there can be relations between events
from different hosts at the same location.

2.3.10.1 Practical Examples

An IPMI:TEMP:HIGH event indicates that the temperature of a server is too high. If this happens
on multiple hosts at the same location, there is likely a common cause (e.g. the cooling system
in the server room is failing).

As another example, reboots of multiple hosts at the same location may indicate a power
outage, e.g. in a whole building.

2.3.10.2 Possible Solutions

A simple solution would be to introduce a property for each event type, which specifies, whether
an event can be caused by an environmental factor. If identical events are generated from different
hosts at a common location, and this property is set for the corresponding event type, the events
can be correlated.

2.3.11 Gathering of Additional Information

In some cases, it is useful (both for the correlation engine and as a service to the operator), if
additional information can be gathered. Since a part of the correlation engine runs directly on
the host, which generates the events, this can often be done by running an external script or by
communicating with an other process.

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 27

2.3.11.1 Practical Examples

An example mentioned often by the Open Systems engineers is the checkservices script, which
returns detailed information about the status of each service on the host, where it is executed.

Another example is the wbinfo command, which can be run to check the connection to the
Active Directory (AD) server after WINBIND:CONF:ADCONN events.

2.3.11.2 Caveats

It is important, not to generate new problems. External scripts should not be blindly executed
whenever a given event arrives. Some events are generated at a rate of multiple events per second.
Running an external script each time such an event is generated would be possibly disastrous.

In the case of checkservices, the same information can be gathered from the nurse process.
In other cases, a rate limit for the execution of external scripts might be a good idea.

2.3.12 Correlation with Information from External Sources

Occasionally, it may be helpful to be able to take information from other sources into account.

2.3.12.1 Practical Examples

As an example, service windows can be considered. When maintenance work on a server is
planned, a service window is usually scheduled. As this information is available to the correlation
engine, it would be useful to correlate events with this information, such that all events generated
during a service window end up in a ticket opened for this specific service window.

2.3.13 Summary

It can be seen, that a large part of the events are caused by connection problems. Especially in
countries with unstable internet connections, a large number of such events is generated, often
unnecessarily. A good correlation of the events with information about connection problems and
ISP outages is therefore essential. Additionally, it might be interesting to correlate ISP outages
also on a higher level, e.g. to detect a simultaneous ISP outage on multiple sites.

A look at the events reveals many frequent event patterns, which are suitable for automatic
correlation. From a high-level perspective, the following patterns can be seen, amongst others:

� Event burst caused by a service sending repeated messages for the same problem

� Irrelevant late events, which reopen old tickets

� Irrelevant unique events, which would not require an open ticket

� “Flickering” of a service, caused by repeated temporary problems

� Event storms, if a root-problem provokes multiple issues with dependent services

� Patterns involving events from multiple hosts

Handling these patterns often requires the correlation of events with other events from the
same host, as well as with information about ISP outages. In more complex cases, a correlation
with events from other hosts may be required, e.g. correlation with events from hosts in the same
cluster, hosts at the same physical location or hosts with the same internet link. Additionally, it

2.3. IDENTIFICATION AND CLASSIFICATION OF EVENT PATTERNS 28

is in some cases useful, if more information can be gathered on the source host, or if an external
information source, such as a database, can be consulted.

Table 2.7 shows the operations, that can be used to correlate events with the identified
patterns (the operations will be explained in Section 3.2). The stateless filtering operation is not
in the table, because it is of no use for any of the observed patterns (which is not surprising, as
we observed the patterns, after filtering had already been done). Obviously, filtering is still an
important operation for any correlation engine.

Pattern C
o
m

p
re

ss
io

n

L
o
g
ic

a
l

O
p

er
a
ti

o
n
s

A
g
g
re

g
a
ti

o
n

S
u
p
p
re

ss
io

n

M
a
sk

in
g

T
h
re

sh
o
ld

in
g

R
a
te

L
im

it
in

g

(D
e-

)E
sc

a
la

ti
o
n

T
em

p
o
ra

l
O

p
er

a
ti

o
n
s

G
en

er
a
li
za

ti
o
n

S
p

ec
ia

li
za

ti
o
n

C
lu

st
er

in
g

Multiple identical events x (x) (x) (x) (x)

Old events x x (x) x

Late events for closed tickets x (x) x x

Irrelevant unique events (x) x (x)

Flickering services x x x (x) x x

Dependencies between services x x x (x) (x) x

Events caused by remote problem x x x x (x) x

Mutual dependencies betw. hosts x x x

Location dependent relations x x (x) (x) (x) (x) x

Table 2.7: Correlation operations useful for correlation of the observed event patterns.

Chapter 3

Survey of Existing Event
Correlation Approaches

This chapter gives an overview over existing event correlation approaches, and presents some of
the available tools. As event correlation is an active research area, as well as a growing market,
both a large number of event correlation approaches and a huge amount of products exist.

As the topic of this thesis is log alert and network event correlation, the selection of the
presented approaches and products is also biased in that direction. Event correlation products
for market data analysis are beyond the scope of this thesis and will not be presented.

3.1 Properties of Event Correlation Engines

Before looking at different event correlation methods, the different properties will be discussed.
Please note that not all properties apply to all techniques and many techniques can be used with
different properties (e.g. many techniques can be used both with expert knowledge as well as
with automatically acquired knowledge). Additionally, a statement about a property does not
say anything about the quality of an approach. While an approach with a given set of properties
may be better suited for some application, another application might as well require the opposite
properties.

3.1.1 Domain Awareness

A correlation engine can either be built for a specific domain (i.e. it “knows”, what kind of
information it processes), or as a general purpose correlation engine.

The advantage of a domain aware correlation engine is that it may provide special operations
and data structures for that domain (e.g. a correlation engine for network events might provide
a function to evaluate, whether two hosts belong to the same network). On the other hand,
the separation between processing logic and domain specific information may be clearer with a
general purpose correlation engine.

As with most properties, the borders are of course blurry, and even general purpose correlation
engines are usually designed with a specific purpose in mind (as an example, SEC is a general
purpose tool that can deal with any line based input, but was designed with log monitoring in
mind [63]).

3.1. PROPERTIES OF EVENT CORRELATION ENGINES 30

3.1.2 Self-Learning vs. External Knowledge

In order to be able to correlate events triggered by service- and network problems, a correlation
engine requires knowledge, such as information about the network structure, information about
the triggers for the events, or information about service dependencies.

Such information can either be gathered automatically, or manually from experts. Obviously,
the second option requires a lot of work from experienced operators. This is economic only if
the majority of the supplied external knowledge is static. If it is mostly dynamic, a self-learning
correlation engine may be more suitable. On the other hand, automatic learning is in some cases
difficult and may lead to incorrect information, if it is not done very carefully.

A compromise is to do automatic information gathering, but leave the final decision, which
information to use, to an operator.

3.1.3 Real-time vs. Stored Data

Event correlation can be done either in real-time with the incoming data, or offline with stored
data.

In the case of event correlation for log monitoring, real-time event correlation is needed. It
should be noted however, that this only means that the events must be processed in real-time, but
not necessarily, that they have to be forwarded immediately. In some cases, it may be necessary
to delay events for a short time, such that events can be modified or forwarded conditionally,
depending on whether another event arrives later.

Offline event analysis on the other hand may be useful to find event patterns in large amounts
of data. Such pattern mining techniques are discussed in [65].

3.1.4 Stateless vs. Stateful

A real-time correlation engine can be stateful (i.e. it has a memory of the event history), or
stateless (without any memory).

Obviously, a purely stateless correlation engine is very limited, as an incoming event can
not be put into relation to older events. A completely stateless correlation engine is limited
to filtering the events according to predefined rules. It is arguable, whether this can even be
called correlation; some methods (such as the coding approach presented in [73]) however assume
several events to occur quasi-simultaneously, and can thus be considered a form of stateless event
correlation [55]. On the other hand, stateless operations are usually very simple and fast, and
may be useful to handle events at the input. A typical correlation engine is therefore usually
stateful, but allows both stateless and stateful operations.

3.1.5 Purely Passive vs. Active

The term event correlation implies, that there are incoming events, which are correlated depend-
ing on previous events and the internal state (cf. the FSM model presented in Section 3.3.1).
Such an event correlation engine would be purely passive, i.e. it would not interact with its envi-
ronment other than by receiving and generating events. In practice, it may however be desirable
to gather additional information, e.g. by running an external script (a possibility provided e.g.
by SEC [66]), thus allowing active behaviour to a certain degree.

3.1. PROPERTIES OF EVENT CORRELATION ENGINES 31

3.1.6 Centralized vs. Distributed

As the events are usually generated by distributed sources, it suggests itself that the correlation is
also done in a distributed fashion. The obvious advantage is a better performance and scalability,
and easy access to additional information from the source. On the other hand, a centralized
approach is better suited to find correlation between events from different sources. Additionally,
a central solution is easier to manage and requires less Operating System (OS) independency.

As a compromise, a possible solution is a system, where the events are pre-processed (e.g.
filtered and compressed) close to the sources, and then correlated centrally in a second step.

For any operation done directly on the source host, it is important to avoid unnecessary
feedback effects (cf. Section 3.3.1).

3.1.7 Default Policy

Similar to packet filters (such as iptables under Linux), a correlation engine can have different
default policies for events with no matching rule, such as dropping all events, forwarding all
events, or simply logging all events without further action.

As a practical example, a part of a distributed correlation engine in a network might be
responsible only for low-priority devices, such as printers, and thus, a default policy to log events
only might be used, with rules specifying exceptions for the few interesting cases.

3.1.8 Loss of Information

An event correlation operation is lossless, if no event or information from an event is lost during
the operation. An event correlation engine is lossless, if all correlation operations are lossless.

In some cases, it may be a requirement, that a correlation engine is lossless, to allow the
logging of all events, and the creation of an audit trail. On the other hand, it may sometimes
be desirable to filter some events, to preserve system resources, i.e. information loss may be
desirable.

From the perspective of an operator, a good trade-off is to keep all information available, but
to show only the most relevant part. The details should be hidden by default, to avoid confusion,
but revealed on demand (“drill-down”), to allow a closer look at the problem.

3.1.9 Transparency

Another criterion is the transparency of the correlation decisions for a human operator. If a
decision can not be reproduced, the only option is to blindly trust the correlation engine, which
is usually undesirable.

Transparency requires, that all operations of a correlation engine are deterministic, and the
internal state as well as the input events are known. Additionally, the behaviour of the corre-
lation engine (which may be represented by correlation rules) must be known. The correlation
operations are usually deterministic and the inputs known. The internal state and the behaviour
depend on the chosen approach.

In the case of the rule based approach, the rules are always known, and ideally, the internal
state only depends on a limited set of past input events (for example, input events older than a
week should usually be irrelevant and the internal state should depend only on recent events). In
this case, it is easy to reproduce the correlation decisions (provided the rules are deterministic).

In other cases, the decisions are often less obvious. Especially in the case of a self-learning
correlation engine, the behaviour may depend on input events from long ago. Although the
complete internal state and all other required information could always be made available to the

3.2. EVENT CORRELATION OPERATIONS 32

operator, and the results are then theoretically reproducible, in practice, the question is not so
much, whether it is possible to reproduce the correlation decisions, but rather, how difficult it is.

Ideally, the correlation engine should be able to explain each decision with a short message,
which is added to the generated output events.

3.1.10 Robustness

If a system handles new and unknown situations well, it is said to be robust. An unknown
situation may arise for instance due to noise (unknown, missing or irrelevant events), a changed
network structure or incomplete information about the network.

3.1.11 Maintainability

As one of the central goals of event correlation is to make the work of the system operators
easier, it is important that the event correlation itself does not require a lot of maintenance. Poor
maintainability is a problem especially in cases, where a lot of expert knowledge is required, and
the environment changes frequently.

3.1.12 Deep vs. Surface Knowledge

Correlation engines can further be discerned by whether they rely on knowledge gained from
observation and experience only (surface knowledge), or on knowledge based on understanding
the structure and functioning of a system (deep knowledge).

A classical language, that can be (and has been) used to represent deep knowledge, is Prolog
(e.g. in IBM Tivoli [7], which will be briefly presented in Section 3.5.1).

3.2 Event Correlation Operations

In this section, the basic operations used for event correlation will be presented. These operations
can seen as building blocks for the construction of more complex event correlation patterns.

The operations required from a correlation engine depend on the field of application. A num-
ber of different event correlation operation exists, as well as a number of terms. Unfortunately,
the same term is not always used for the same operation; specifically, the terms aggregation,
compression, counting and duplicates removal are often used for similar operations, with slightly
varying definitions. This thesis tries to follow the most widely used definition.

3.2.1 Compression

Compression is the operation of replacing multiple identical events (i.e. identical, except for the
time they were generated) by a single event. The single event should ideally contain the number
of replaced events and the time of the first and last event, or alternatively the time of each event.

The term compression is used for this operation e.g. in [42, 52, 55, 65]. In some sources, the
requirement that the compressed events need to be identical is weakened to “similar” events.

3.2.1.1 Other terms

The term compaction can be used for the same operation [55], but will not be used in this thesis.
The term duplicate removal is often used for the same or a similar operation as well (cf. e.g. [7]).

Although the compression operation is sometimes also called aggregation (e.g. in [72]), the
term aggregation will be used in this thesis with a different meaning.

3.2. EVENT CORRELATION OPERATIONS 33

3.2.2 Logical Operations

A logical operation is a connection of events with Boolean logic (in [42], the correlation operation
itself is simply called “Boolean”), such as “events A and B, but not C”.

3.2.3 Aggregation

Aggregation is the operation of collecting (aggregating) multiple events in a single event. It
can therefore be seen as a form of lossless compression [55]. As in [7], we do not require that
the aggregated events are identical. Unlike compression, aggregation thus creates a new event
(with a new meaning), which contains the aggregated events (rather than replacing them, as
compression does).

3.2.4 Filtering (Stateless Filtering)

Filtering is the operation of removing events with given properties from an event stream. Al-
ternatively, the default policy could also be to drop all events, and a filter would then decide,
which events to forward. The filtering operation does not take into account other events and is
therefore stateless.

Most texts agree on the definition of filtering as a stateless operation, taking only event
parameters into account [52, 55, 65]. In practice, the term is however often used in a broader
sense, for the filtering of events based on any criteria, including the occurrence of other events.
In [52], the term “intelligent filtering” is suggested for this use.

3.2.5 Suppression (Stateful Filtering)

Suppression (or selective suppression) is the operation of suppressing certain events depending
on the context of the event correlation engine [42, 52, 65], i.e. it is the stateful counterpart to
filtering. The goal of this operation is not to detect event patterns, but rather to hide or remove
certain events, if a specific event pattern occurs. Suppression is thus more of a filtering operation,
than a correlation operation.

3.2.5.1 Event Masking

Event masking (or topological masking) is a special case of suppression, based on topography.
The goal is to hide events from nodes that are (from the view of the event sink) behind a node
that already reported a problem (e.g. events from nodes behind a router). As pointed out in [51],
this operation is more complex, if there are multiple paths to the event sink, or even multiple
event sinks.

3.2.5.2 Examples

As an example, if a host is unreachable, and its default router failed, the host-unreachable
event can be masked in the presence of the router-failed event.

3.2.6 Thresholding

Thresholding is the operation of generating an event if a certain event rate1 threshold is exceeded
(or possibly also if the event rate falls below a threshold).

1Please refer to Appendix A for a more detailed description of event rate measuring

3.2. EVENT CORRELATION OPERATIONS 34

3.2.6.1 Other Terms

Thresholding is sometimes also referred to as counting [65] or throttling [7]. The term throttling
is however misleading, as it is often used as a synonym for rate-limiting.

3.2.7 Rate Limiting

Rate limiting is the operation of forwarding events at no more than a given event rate. This
operation can be combined with compression.

3.2.8 Escalation

Escalation is the operation of increasing a specific parameter (e.g. priority) of an event, if some
given conditions apply [7, 65].

3.2.8.1 Other Terms

In [52], the term scaling is used for this operation. In [55], a more generic operation called
modification is introduced, which can modify any event parameter.

3.2.9 Temporal Relationship

Temporal relationship operations correlate events based on the time and order they arrive [52,65].

3.2.9.1 Examples

Some examples are:

� Event A arrived at least 5 minutes, but at most 10 minutes after B.

� Events A and B arrived within a window of 5 minutes.

� After A, no event B arrived for at least 20 minutes.

3.2.10 Generalization

Generalization is explained in [42] as “reference to an alarm by its superclass”. In other words,
the idea is to forward a more general event, rather than the specific event. Although no new
information is generated, generalization can be useful to detect a common root-cause for multiple
events.

3.2.10.1 Examples

As an example, host-unreachable events indicating that a specific host is not reachable, could
be replaced by more general isp-host-unreachable events, indicating that an unspecified host,
which uses a specific ISP, is unreachable. The isp-host-unreachable events can later be
compressed, and a rate threshold may be used to detect an ISP outage.

3.2.11 Specialization

Specialization is the opposite of generalization. This operation replaces an event by an event of
it’s subclass [65].

3.3. EVENT CORRELATION TECHNIQUES 35

3.2.11.1 Examples

As an example, if we receive an event indicating that a given host is down, a service-down event
could be automatically created for each service running on that host. Although this would not
generate any additional information, it might be useful to trigger specific rules to handle failing
services.

3.2.12 Clustering

Clustering is defined, e.g. in [52,65] as an operation, that generates a new event from a complex
pattern, possibly combining other operations defined so far.

3.2.12.1 Example

Some examples are:

� Generate event C, if the rate of event A exceeds a threshold of five events per minute, and
no event B has occurred for at least one hour.

� Aggregate all events that arrived within the last ten minutes into event B, if event A arrives
and context C exists.

3.3 Event Correlation Techniques

3.3.1 Finite State Machine Based

The FSM approach to event correlation is introduced in [9]. The authors argue, that the fault
identification process can be split into two steps, fault detection (i.e. noticing, that there is a
problem) and fault localization (i.e. finding out, what the problem is), and that a FSM based
correlation engine can help in the first step, by modeling the monitored system. The model
proposed in [9] is an FSM based on the observable events generated by the monitored process,
(which is assumed to be an FSM as well). If an event arrives, which leads to an invalid state in the
model, an error is reported. In [9], it is assumed, that the filter, which decides, which events are
observable, is a design parameter. The authors show, that the construction of a maximum filter
(i.e. a minimal set of events that allow the detection of a given problem) is an Nondeterministic
Polynomial (NP)-complete problem, and thus propose a heuristic algorithm.

The selection of a filter is however of secondary interest for this thesis, as the FSM is intro-
duced mainly as a generic model for a correlation engine. In order to allow the generation of
different output events, rather than just the reporting of an error, a slightly extended model of a
FSM, a Finite State Transducer (FST), will be used. In the context of event correlation, a FST
can be defined as a quintuple, consisting of

� A set of possible input events I (input alphabet)

� A set of possible output events O (output alphabet)

� A set of possible states S

� An initial state s0 ∈ S

� A state transition function: f : I × S → S × (O ∪ ε), which defines the next state and the
(possibly) generated output event for each state and input event1

1ε represents the empty event, i.e. no output.

3.3. EVENT CORRELATION TECHNIQUES 36

The finite-state transducer is a nice basic model for a correlation engine, because it highlights
the important factors, but ignores irrelevant aspects. For instance, in a practical setting, it is
an important feature (and for commercial products a frequent sales argument), that many types
of input (syslog messages, Extensible Markup Language (XML) events, . . .) and output events
(such as email notifications, pager messages, syslog messages, . . .) can be handled, respectively
generated – but for a formal discussion of correlation techniques, this is completely irrelevant.1

Furthermore, many of the seemingly more complex correlation operations can be represented
in this model by simply adding external event sources and sinks, and thus without making the
formal model more complex. As an example, a rate threshold can be realized with a normal
finite-state transducer, if we assume, that there is an external event source, which generates
timer events at the necessary resolution (e.g. one event per second)2.

Another aspect illustrated nicely by the FSM model is the assumption, that output events
do not have any effect on input effects. Although this not always strictly true in practice, it is
an important assumption. While there may be indirect relations, e.g. an operator that takes
actions based on output events, which has consequences on future input events, direct effects
from the output on the input should generally be avoided, as such a loop might provoke many
new problems.3

Finally, with the FST model, it is also easy to answer the question, how to handle more than
one event pattern. A FST for each pattern can be created individually, and the union of all
FSTs can then be used to model the complete system (if we consider non-deterministic FSTs,
which are formally equal to deterministic FSTs, building the union simply means that the new
starting state is the set of all starting states of the individual FSTs).

3.3.2 Rule Based Event Correlation

One of the earliest approaches to event correlation is Rule-based Reasoning (RBR). As explained
in [22], a rule based event correlation engine is organized in three levels:

� Data level – working memory or global database, which contains information about the
problem at hand.

� Knowledge level – a knowledge base (rule repository), which contains domain-specific
expert knowledge.

� Control level – an inference engine, which determines, how to apply the rules from the
knowledge base to solve a given problem.

Unlike in a traditional program, control and knowledge are thus separated, and the knowledge
can be extended without changing the program code of the inference engine.

The rules usually specify condition-action relations, i.e. each rule specifies a condition (e.g.
“event A occurs at least ten times within five minutes, then event B occurs within no more than
one minute”) and a corresponding action (e.g.“send an email with a warning to the operator”).

1In a practical program, the separation of input data acquisition, correlation and output action (e.g. by having
an independent process for each task) might actually be a good idea as well, for several reasons (modularity can
help to lower the complexity, and thus increase stability and security).

2On the other hand, such a realization of an event threshold is rather impractical, as all possible states would
have to be included. For instance, for a sliding window of one hour, with a timing resolution of one second and a
threshold of 100 events, 1013600 states would be needed to represent every possible event history (as every second
of the past hour, between zero and 100 events could have arrived).

3In control theory, a positive feedback loop, which often leads to unstable behaviour, represents this problem.
A common example is a signal from microphone, that is fed through an amplifier to a speaker. If the microphone
is too close to the speaker, a positive feedback loop is created and the signal becomes unstable.

3.3. EVENT CORRELATION TECHNIQUES 37

As the evaluation of a rule is triggered by corresponding input events; such rules are often called
Event Condition Action (ECA) rules.

The language used to represent correlation rules is a topic of active research. Approaches used
in current products range from simple proprietary languages (e.g. in Simple Event Correlator
(SEC); cf. Section 3.4.3), to XML based languages (e.g. in OSSIM; cf. Section 3.4.7), general
purpose languages (such as Lua, which is used in Prelude; cf. Section 3.4.6) to Structured Query
Language (SQL) based rule languages (e.g. in Esper; cf. Section 3.4.9).

As stated above, the evaluation of the rules requires some control logic. In a simple case,
the control logic may simply evaluate one rule after the other, until the first matching rule is
found (similarly to how the Linux network filter executes iptables rules). In more complex
cases, forward chaining may be used to derive new knowledge by applying the rules from the
rule repository to the existing knowledge (deductive reasoning). Practical implementations often
make use of some variant of the RETE algorithm [26]. In contrary to the linear approach, the
RETE algorithm is asymptotically independent of the number of rules [55].

A benefit of rule-based systems, especially when used with simple if-then style languages is the
similarity to the natural language. A statement, such as “if event user-login-failed occurs
10 times within 5 minutes, then send an email to the operator” is perfectly understandable
even to someone without computer programming experience. This also makes the decisions of a
rule-based correlation engine comparatively easy to reproduce.

Unfortunately, rule-based approaches also have several drawbacks. Traditionally, the rule
repository relies on the knowledge of an expert, who has domain-specific experience with the
problems that are to be solved by the system, and a knowledge engineer, who knows how to
represent that knowledge in the rule-system [22]. Even if the rule creation is simple enough to be
done directly by the expert, the knowledge still has to be entered into the system manually, which
is time-consuming. While a lot of initial work may be acceptable, frequent changes in the network
also make tedious maintenance of the rule-repository necessary, which is counterproductive, as
one of the stated goals for the correlation engine is to lessen the workload of operators. Another
problem is the inability of rule-based systems to automatically learn from experience, meaning
that the same calculations have to be made over and over again, whenever the same set of events
occurs [52]. Similarly, rule-based systems also tend to fail when they are presented with new or
unexpected situations [47].

3.3.3 Case Based Reasoning

In Case-based Reasoning (CBR), each problem and the corresponding solution is considered as
a case. The approach of CBR to solve a given problem is to find past problems from a case
library, that are similar to the problem at hand, and to try to apply a similar solution. In the
end, the gained experience is stored as a new case in the library. This approach is not unlike
human behaviour – if we are confronted with an unfamiliar situation, we often try to adapt a
working solution from a similar problem in the past.

The CBR process can be separated into different cycles. The following separation is adapted
from [1] and [58]:

1. Identify the most similar case from the case library and retrieve the solution.

2. If necessary, adapt the old solution to the current problem, to propose a new solution.

3. Apply the new solution to the problem, and verify the outcome.

4. If the solution was successful, store the new case in memory.

3.3. EVENT CORRELATION TECHNIQUES 38

5. Otherwise, explain the failure and propose a better solution.

The advantage of this approach is that knowledge from past cases can be reused automatically,
and that the knowledge base grows with each solved problem. Additionally, in contrast to strictly
rule based systems, a CBR system can also propose solutions for previously unknown problems.
As argued in [46], the fact that proposed solutions are derived from working solutions for past
problems (which can be presented as evidence) may also increase the user acceptance, i.e. the
users trust in the systems decisions.

On the other hand, each of the above steps can be difficult, and usually, general domain-
specific knowledge (as opposed to knowledge about specific cases) is required in the cycle [1].
For instance, the retrieval of similar cases must be done carefully. As an example, in a medical
diagnosis system, proposing a solution based on the fact that it worked in another case, for a
patient with a similar name, height and weight is usually not a good bet, although e.g. the
weight may be relevant in some cases. In [47], the proposed solution is the use of a determinator
for each case in the case library, which points out the relevant attributes to determine similarity.

An even more difficult task is the adaptation of the old solution. While the manual specifica-
tion of adaptation rules is a possible solution, such an approach partially defeats the advantage of
CBR systems, as manual knowledge engineering is again needed. According to [46], “difficulties
with case adaptation have led many CBR systems to simply dispense with adaptation, replacing
the retrieve-evaluate-adapt cycle with retrieve and propose systems.”

Obviously, there is some similarity between a case library and a ticketing system, which
usually contains problems and corresponding solutions as well. Therefore, it suggests itself to
use the ticketing system as a case library. This idea has been investigated in [47], where a CBR
trouble ticketing system called CRITTER is presented. An interesting (and important) feature
of CRITTER is the possibility to rate solutions, i.e. give feedback, whether they were fruitful.

Application areas for CBR systems can be found, wherever knowledge is based on past cases,
such as in medical diagnosis (where a physicians diagnosis is usually based on her experience
with past patients), or in law (where a judgment may be based on past cases, i.e. precedence).

3.3.3.1 Examples

Some research examples of CBR systems are presented in [58], such as the CHEF program, which
is designed to develop plans for preparing dishes. This process is described as follows:

For example, when presented with the task of creating a strawberry soufflé, CHEF
resorts to modifying a vanilla soufflé recipe. However, simply adding strawberries
to the standard recipe keeps the soufflé from rising properly. CHEF discovers the
source of the problem in the excess liquid from the berries and decides that the best
remedy is to add more whipped egg whites. This solution fixes the recipe. CHEF
never repeats this mistake and can use this experience in other recipes, such as a
raspberry soufflé.

A more practical example is Compaq’s Support Management Automated Reasoning Techno-
logy (SMART) [2], where a CBR system is used to support the customer service.

3.3.4 Model Based Reasoning

The basic idea of Model-based Reasoning (MBR) is to represent the structure and the behaviour
of the system under observation in a model, to allow the reasoning about fault causes. The
task therefore is “a process of reasoning from behaviour to structure, or more precisely, from
misbehavior to structural defect” [23]. As explained in [23], this requires

3.3. EVENT CORRELATION TECHNIQUES 39

� a description of the structure,

� a description of the behaviour,

� and a set of guidelines to investigate misbehaviour based on these two descriptions.

As pointed out in [37], the MBR approach itself does not suggest a detailed technique. MBR
is thus more of a paradigm, rather than a specific approach. According to [23], “a variety of
techniques have been explored in describing behavior, including simple rules for mapping inputs
to outputs, Petri nets, and unrestricted chunks of code.”

Although a practical implementation might use a rule-based model, the MBR approach differs
fundamentally from rule-based event correlation. In contrary to a rule-based correlation engine,
which specifies event patterns as conditions for certain actions, an MBR system specifies a system
model, with events as consequences of certain model states or transitions. Even though rules
may be used to specify the model, MBR systems are thus closer to the FSM approach.

In a computer network, the application of MBR methods may be unsuitable, as the description
of the network structure and the behaviour of each service would likely be too difficult and time
consuming. A more practical use case for MBR is fault diagnosis in an electrical circuit, where
the network structure is already specified as a circuit diagram in the design phase, and the
behaviour is — at least for a suitably limited subclass of electrical components — clearly defined
by a few rules (such as Ohm’s law, Kirchhoff’s laws, etc.). In [23], the use of MBR for fault
diagnosis in logic circuits is examined.

3.3.5 Codebook Based Event Correlation

In [73], the authors propose the use of coding techniques for event correlation. To allow the
localization of problems, the dependencies between observable symptoms and underlying prob-
lems are examined and a suitable subset of the symptom events is selected (the codebook). The
codebook must be sufficiently large to identify the problems (a codebook that is too large pro-
vides unnecessary redundancy, but a small codebook may omit information needed to distinguish
between problems). For each possible problem, a binary vector is then created, which indicates,
whether each symptom in the codebook can be caused by that specific problem.1 To identify
problems, the events in the codebook are monitored in real time, and whenever some events
occur, the event vector is compared to the vector for each problem. The most similar vector
(the problem vector with the smallest Hamming distance to the observed vector) is selected to
identify the observed problem.

To illustrate the explanation, consider the following example: We have problem A, which
causes symptoms X, Y and Z, problem B, which causes W and Y, and problem C, which causes Y
and Z. Additionally, events can be generated or lost randomly. As symptom Y is generated by all
problems, it provides no information, and we select W, X and Z as the codebook. The correlation
matrix, which consists of all problem vectors, is shown in Table 3.1.

If events W, X and Z are now observed, the problem vector with the smallest Hamming distance
is A, and the problem is thus identified. In other cases, e.g. if only W and Z are observed, there
is no clear decision.

As the measurement of the Hamming distance is straightforward, and only a subset of the
input events has to be processed, codebook based correlation is a comparatively fast approach.
Additionally, there is a good tolerance to lost events or noise. Furthermore, the problem vectors
can be generated automatically from a set of training data, as explained in [73].

1I.e. each element is either a one, if there is a relation between the given symptom and problem, or a zero if
there is no relation. [55] points out, that other values could be used as well, e.g. a value indicating the probability
of a relation.

3.3. EVENT CORRELATION TECHNIQUES 40

A B C
W 0 1 0
X 1 0 0
Z 1 0 1

Table 3.1: Correlation matrix for the codebook example — problem vectors for A, B and C.

A significant shortcoming of the codebook approach (at least when trying to apply it to the
patterns identified in Chapter 2) is the missing notion of time. When we say, a set of events
occurred together, this statement contains no information about the time window applied to
group the events. Additionally, there is no notion of an event order — all events in a group
are assumed to occur simultaneously. Many of the patterns identified in Chapter 2, would be
difficult to handle with a pure codebook approach, e.g. event bursts, or related events, which
occur at different points in time. The fact that events do not have any properties is another
significant problem in our case. To correlate the patterns applied in Chapter 2, a distinction
between different source hosts would for instance be needed (since there are relationships between
events from some hosts, we can not correlate the events from each host independently).

3.3.6 Voting Approaches

As explained in [55], the idea of the voting approach is that “each element must express its
opinion on a specific topic. Then, a majority rule (absolute majority or k-majority for instance)
is applied on this set of opinions (i.e. votes).”

Correlation by voting can be used to localize a fault. Usually, the votes (expressed by events
from different nodes) can not give exact information about the location of a fault, but they can
indicate a direction. As pointed out in [52], in this case, it is necessary that the correlation engine
knows the topology of the managed network, such that the correlation engine can calculate the
number of votes for each element.

An example for the use of a voting approach is given in [27]. The authors describe a scenario,
where it is necessary to identify a poison message (which propagates through the network by
triggering a software bug in vulnerable devices) from a number of possible message types in a
distributed network. The examined solution employs a neural network in each subnetwork. Each
neural network decides, which message type is most probably the poison message and votes for
that message. The message type with the most votes is then chosen as the most likely poison
message type.

3.3.7 Explicit Fault-localization

In [10], the author proposes to include the information about all possible fault localizations with
each alarm. As the authors explain, the process of fault localization is then simple:

In the case that alarms are reliable and there is only a single fault in the network,
then fault localization is straight forward: The fault lies in the intersection of the set
of locations indicated by each alarm. Thus, intuitively, alarms that share a common
intersection should be correlated.

The required prerequisite of having only a single fault in the whole network is of course not
very practical (although it is an assumption frequently made); the authors therefore propose an
extension to cover multiple faults, which is explained in [10].

3.3. EVENT CORRELATION TECHNIQUES 41

Additionally, this method depends heavily on a-priory information, as the author himself
explains in [10], and a method to gather this information automatically would be vital for a
practical implementation.

3.3.8 Dependency Graphs

In [35], the use of dependency graphs for event correlation is examined. A dependency graph
is a directed graph, which models dependencies between the managed objects. In the case of a
network, the nodes represent the network elements (e.g. hosts), and an edge from node A to
node B indicates, that failures in node A can cause failures in node B.

Assuming that some fault events were generated in a given time window, the goal is to find
the likely root cause. As explained in [35], the basic idea is to start at the nodes that generated
the initial events, and find nodes, on which many (or ideally all) of the initial nodes depend. This
nodes are then interpreted as possibly responsible nodes (root-cause). As explained in [35], the
length of the path between an identified responsible node and the initial nodes can be used as
a metric for the quality of the correlation, as an operator has to reproduce this path to localize
the fault.

As [35] further explains, we (rather optimistically) assume that only one problem occurs
at a time (i.e. only one root-cause; multiple events from dependent services may of course be
generated). If multiple problems occur at approximately the same time, an identification of all
root-causes may not be possible.

A similar approach, which also takes probabilities into account, is the Bayesian network based
approach, which will be discussed next. For a more elaborate discussion of dependency graph
based event correlation, the interested reader is referred to [35].

3.3.9 Bayesian Network Based Event Correlation

A Bayesian network (sometimes also called a belief network) is a directed acyclic graph [45], which
models the probabilistic relations between network elements, represented by random variables.

Rather than an elaborate description, Bayesian networks will be explained with an example.
A more thorough discussion can be found in [4].

3.3.9.1 Example

Let’s consider a case, similar to the example discussed in Section 2.3.7.1, where we receive an
event from a mail server, indicating that the anti-virus signature patterns can not be updated
(this event will be represented by the random variable U , which has two possible values; U = 1
indicates that we received this event, whereas U = 0 indicates that we did not receive such an
event). This event could be caused by a problem with the infrastructure of the vendor (random
variable V ; V = 1 indicates that a problem exists), or because of an ISP outage (random variable
I; I = 1 if there was an ISP outage). However, an ISP outage is likely to cause a event from a
central monitoring process (M ; M = 1 if such an event arrived) as well. Assuming that we know
(from analysis of historical data or expert knowledge) the probability distributions of V and I
(which are assumed to be independent) and the conditional probability distributions of U and
M (which are assumed to be conditionally independent), the situation can be modeled as shown
in Figure 3.1 with the probability distributions given in Tables 3.2 and 3.3.
The probability distributions are completely fictional, but could be justified as follows:

� P (M = 1|I = 0) > 0 (i.e., there is a chance for false positives from ISP monitoring),
because probe packets may get lost.

3.3. EVENT CORRELATION TECHNIQUES 42

V I

MU

(Vendor infrastructure
unavailable) (ISP outage)

(ISP monitoring
event)

(Pattern update
error event)

Figure 3.1: Simple Bayes network example.

P (V = 0) P (V = 1)
0.98 0.02

P (I = 0) P (I = 1)
0.8 0.2

Table 3.2: Probabilities for vendor problems and an ISP outage.

I P (M = 0|I) (M = 1|I)
0 0.95 0.05
1 0.1 0.9

V I P (U = 0|V, I) (U = 1|V, I)
0 0 0.99 0.01
0 1 0.04 0.96
1 0 0.08 0.92
1 1 0.03 0.97

Table 3.3: Conditional probability distributions for a monitoring event and a pattern update
error event.

� P (M = 0|I > 1) > 0, because an event may get lost.

� P (U = 1|V = 0, I = 0) > 0, because there are reasons for a pattern update error other
than an ISP outage or problems with the update servers.

� etc.

This model can now answer our probabilistic questions, e.g. “what is the chance, that an ISP
outage has happened, if we observe an event from ISP monitoring and a pattern update error
event?”. The answer to this specific question is the following one:

3.3. EVENT CORRELATION TECHNIQUES 43

P (I = 1|U = 1, M = 1) =

=
P (U = 1, M = 1|I = 1)P (I = 1)

P (U = 1, M = 1)
(Bayes’ theorem)

=

∑
x∈{0,1} P (I = 1)P (V = x)P (U = 1|I = 1, V = x)P (M = 1|I = 1)∑

x,y∈{0,1} P (U = 1|V = x, I = y)P (M = 1|I = y)P (V = x)P (I = y)

=
0.2 · 0.9 · (0.98 · 0.96 + 0.02 · 0.97)

0.98 · 0.8 · 0.05 · 0.01︸ ︷︷ ︸
(x=0,y=0)

+ 0.98 · 0.2 · 0.9 · 0.96︸ ︷︷ ︸
(x=0,y=1)

+ 0.02 · 0.8 · 0.05 · 0.92︸ ︷︷ ︸
(x=1,y=0)

+ 0.02 · 0.2 · 0.9 · 0.97︸ ︷︷ ︸
(x=1,y=1)

≈ 0.9935

Unfortunately, in the general case, probabilistic inference in a Bayesian network is NP-hard,
as shown in [20]. Efficient solutions for large networks are valid either only for restricted network
classes, or they use approximation algorithms [4].

3.3.10 Neural Network Approaches

The idea behind Artificial Neural Networks (ANNs) is to reproduce the function of a human
brain in an artificial model. As the human brain is particularly efficient at pattern recognition,
the use of ANNs for tasks, such as speech and image recognition, or event correlation, suggests
itself.

Although the early research with ANNs dates back to the 40’s, the initially great expecta-
tions could at that time not be fulfilled. ANN methods however experienced a revival in the
80’s, when faster computers and Very Large Scale Integration (VLSI) methods made practical
implementations possible [48,52].

Generally speaking, an ANN is a network of processing nodes (the equivalent of biological
neurons), which perform operations on the weighted inputs to generate an output (which is again
used as input for other nodes). The computation can be a simple mathematical operation, such as
a summation of all inputs, but also something more complex, such as a temporal operation [48],
a threshold, or an operation involving the memory of a node [52]. To implement automatic
learning, the input weights are usually dynamically adapted [48]. The procedures for adapting
the weights and the selection of operations for the nodes depend on the specific application for
a neural network, and many possible approaches exist.

As stated in [55], “Neural Networks seem not to be frequently applied in Alert Correlation
tools.” As a reason, a lack of transparency is given — “it is difficult to ‘know’ what is exactly
done inside the ANNs.” An example for a practical application is presented in [69], where a
neural network is used to correlate alarms in a cellular phone network. As benefits, the author
lists the simple adaptability to a changing network configuration and the resistance to noise.

3.3.11 Even More Approaches

Although the most widely used approaches have been presented in the previous sections, the list
is by no means complete. Other approaches include:

� Genetic algorithms, which employ artificial evolution by repeatedly selecting an optimal
subset from a mutating population. An example is GASSATA (Genetic Algorithm for
Simplified Security Audit Trail Analysis), presented in [53]. In this case, the “population”

3.3. EVENT CORRELATION TECHNIQUES 44

is a set of vectors indicating different combinations of attacks, and the goal is to find the
most likely combination of attacks, given a set of generated events.1

� Fuzzy logic approaches, which employ concepts from fuzzy logic, such as fuzzy sets.2 As
explained in [55], fuzzy logic concepts and non-probabilistic approaches are not necessarily
competitive. As an example, a rule-based system might use fuzzy rules.

� Constraint-based approaches, which apply Constraint Satisfaction Problem (CSP)
paradigms3 to fault diagnosis. This approach is somewhat similar to MBR, but constraints
are used to represent the system behaviour. Further explanations and an example of a
practical application can be found in [56].

� Blackboard systems, where a central, global data repository (the blackboard) contain-
ing input data and partial solutions is iteratively updated with information from different
independent knowledge sources containing the expertise to solve the problem. The knowl-
edge sources communicate only via the blackboard. Such a system is called a blackboard
system, because it resembles a setup, where different human experts work together on a
problem, by adding parts of the solution to a physical blackboard. More information can
be found in [21].

� Context Free Grammars (CFGs), that are used to represent fault propagation patterns
in a network. As explained in [59], this can be seen as an extension of the dependency
graph approach.

� Model traversing techniques, which make use of object models to determine fault
propagation. As explained in [44], “this approach uses a generic resource model in order to
represent a network’s heterogeneous components and their relationships with each other in
a homogeneous fashion.” An example for such a model is the Open Systems Interconnection
(OSI) network model, which might be used to determine dependencies between objects on
different network layers. Unlike fault propagation models (such as dependency graphs),
model traversing techniques do not specify fault dependencies directly, but rather derive
them from the model during run-time. The model is thus independent from a specific
network, which makes model traversing techniques attractive for networks with frequent
changes. On the other hand, this approach lacks the flexibility to deal with more complex
fault propagation scenarios [44,59].

Even more event correlation approaches can be found in [52], [55] and [59].

3.3.12 Hybrid Approaches

Obviously, many solutions exist, which combine several approaches. An interesting example is
the hybrid RBR and CBR system proposed in [43]. This system makes use of both a correlation
engine with a rule base, as well as a CBR engine with a case memory. The idea is to allow an
information flow in both directions, to let the correlation engine aid in the selection of cases from

1While the case of only one attack at a time could be solved in linear time, by simply evaluating the likelihood
for each attack, the author is pessimistic and assumes, that more than one attack at a time may be possible,
which makes the problem NP-complete [53].

2In a fuzzy set, each element has an assigned value (0 ≤ p ≤ 1) for the probability of its membership in the
set. This is a generalisation of classical sets, where elements are either contained (p = 1) or not contained (p = 0)
in the set.

3A CSP is a problem, where a configuration for a set of variables must be found, which fulfills a given set of
constraints. A popular example of a CSP is the Sudoku puzzle.

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 45

the case memory, and use the additional information from past cases for further correlation. For
more information about this approach, the interested reader is referred to [43] and [36].

3.3.13 Summary

A lot of different approaches, and combinations of approaches exist today. Obviously, trying to
argue, that one approach is generally better than an other one is futile, as this depends highly
on the problem at hand.

3.3.13.1 Classification

Different schemes have been proposed to classify the approaches. A common approach is the
separation between probabilistic and non-probabilistic approaches, such as in [45], where the
authors separate between FSM based and probabilistic approaches. A different classification is
used in [59], where the author separates fault localization techniques into Artificial Intelligence
(AI) techniques (RBR, CBR, MBR, neural networks, decision trees), model traversing techniques
and fault propagation models (codebook approach, Bayesian networks, dependency graphs).

3.3.13.2 Advantages and Drawbacks of Different Approaches

Table 3.4 lists some of the strengths and weaknesses of different event correlation approaches.

3.4 Existing Open Source Event Correlation Software

.
In this section, a selection of open source event correlation applications is presented. The

focus lies on products targeted mainly at log and network event correlation, but even in this
area, the list of presented products is by no means complete. The presented applications were
selected, based on the following criteria:

� Significant use in real-world scenarios

� Maturity

� Active maintenance and development

The discussion is focused mainly on the event correlation capabilities of each product.

3.4.1 Swatch

Swatch1 is an open source log monitoring tool written in Perl and licensed under the General
Public License (GPL). Swatch can be configured with simple rules. Each rule contains a regular
expression pattern to either ignore a matching log message, or take a specified action, like printing
the message on the screen, sending an email, or executing an external program. Although the
authors do not advertise Swatch as event correlation software, Swatch also supports simple event
correlation operations, such as the specification of a rate threshold, or of a time window for rules.
Swatch can be used both off-line, by reading log messages from a file, or in real-time, by reading
log messages directly from the output of a program or by following the syslog messages.

1Swatch is available on SourceForge at http://sourceforge.net/projects/swatch/.

http://sourceforge.net/projects/swatch/

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 46

Approach Strengths and Weaknesses
FSMs Pro: Simple, good as a basic model, easy to understand

Contra: Too simple for practical applications, no tolerance to noise [73]
RBR Pro: Transparent behaviour, close to natural language, modularity [6]

Contra: Time-consuming maintenance, not robust [6, 73], does not learn
from experience [52]

CBR Pro: Automatic learning from experience, reasoning from past experi-
ence is natural [1], can be combined with ticketing system [2]

Contra: Automatic solution adaptation and reuse is difficult
MBR Pro: Relies on deep knowledge

Contra: Description of behaviour and structure may be difficult in practice
Codebook Pro: Fast, robust, adapts to topology changes [73]

Contra: Reproducing the behaviour manually is tedious; no notion of time
Voting Pro: Great for use in a distributed fashion

Contra: Requires knowledge about topology
Explicit fault Pro: More efficient and extendable than rule-based approach [10]
localization Contra: Depends heavily on a-priori information [10]
Dependency Pro: Good for dealing with dynamic, complex managed systems [35]
graphs Contra: Assumption, that there is only one problem at a time
Bayesian Pro: Good theoretical foundation
networks Contra: Probabilistic inference is NP-hard [20]
ANNs Pro: Powerful for problems, that are suitable to be solved by the human

brain [52]
Contra: Behaviour difficult to understand; requires a lot of processing

power

Table 3.4: Advantages and drawbacks of the presented event correlation approaches.

The following listing shows a simple swatch rule, which prints the log message in bold red,
and sends an email to root, if there are at least three log messages containing the string “failed
login” within one minute:

1 watchfor / l o g i n f a i l e d /
2 th r e sho ld track by=f a i l e d l o g i n s , type=both , count =3, seconds=60
3 echo=bold , red
4 mail=roo t@ loca lho s t

More information about Swatch can be found in [38], as well as in the manual page of
Swatch [3].

3.4.2 LogSurfer

LogSurfer1 is a log monitoring tool based on Swatch, but written in C (which makes it more
suitable for large volumes of messages). LogSurfer operates the same way as Swatch, by matching
on log lines with regular expressions and executing corresponding actions, but introduces some
new features. An interesting possibility is the dynamic creation (and deletion) of rules, which
allows, for instance, the grouping (aggregation) of log messages (something, which is not possible
with swatch).

1Available at http://www.crypt.gen.nz/logsurfer/.

http://www.crypt.gen.nz/logsurfer/

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 47

LogSurfer is distributed under an own open source license. More information can be found
in [62].

3.4.3 SEC

Simple Event Correlator (SEC)1 is an event correlation tool written in Perl. Similar to Swatch
and LogSurfer, SEC allows the specification of rules to match line based input events (such
as log messages) and execute corresponding actions. Besides regular expressions, custom Perl
functions can also be used to match the input lines, or to evaluate conditions. An action can
be the creation of a log message, writing the event to a file, executing an external program, etc.
Additionally, SEC allows the creation of synthetic events and dynamic contexts (representing
internal state), which can be used as additional condition for rules. Together with the basic
correlation operations provided by SEC, this allows the detection of composite events. The basic
correlation operations are listed and described in the man page of SEC [66] as follows:

� Single — match input event and execute an action immediately.

� SingleWithScript — match input event and depending on the exit value of an external
script, execute an action.

� SingleWithSuppress — match input event and execute an action immediately, but ignore
following matching events for the next t seconds.

� Pair — match input event, execute an action immediately, and ignore following matching
events until some other input event arrives. On the arrival of the second event execute
another action.

� PairWithWindow — match input event and wait for t seconds for other input event to
arrive. If that event is not observed within a given time window, execute an action. If the
event arrives on time, execute another action.

� SingleWithThreshold — count matching input events during t seconds and if a given thresh-
old is exceeded, execute an action and ignore all matching events during the rest of the
time window.

� SingleWith2Thresholds — count matching input events during t1 seconds and if a given
threshold is exceeded, execute an action. Then start the counting of matching events again
and if their number per t2 seconds drops below the second threshold, execute another
action.

� Suppress — suppress matching input events (used to keep the events from being matched
by later rules).

� Calendar — execute an action at specific times.

Although the individual operations are rather simple, the possibility to combine rules with
other rules, dynamic contexts, Perl expressions and external scripts2 allows for complex correla-
tion and makes SEC very versatile.

The following rules from the SEC rule set repository [67] provide an example for the appli-
cation of SEC to correlate portscan events:

1SEC can be found at http://kodu.neti.ee/~risto/sec/.
2Although Swatch and LogSurfer also allow the execution of external scripts as actions, SEC allows the use of

the return value as input for further correlation.

http://kodu.neti.ee/~risto/sec/

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 48

1 ##
2 # Sample SEC r u l e s e t f o r ”PORTSCAN FROM ip1 TO ip2 : por t ” event s
3 ##
4

5 # process ”PORTSCAN FROM ip1 TO ip2 : por t ” events , and i f a c e r t a in
6 # source hos t has scanned the same de s t i na t i on por t on more than
7 # 10 d i s t i n c t d e s t i na t i on hos t s during 60 seconds , r a i s e an alarm
8

9 type=S i n g l e
10 ptype=RegExp
11 pattern=PORTSCAN FROM (\S+) TO \S+:(\d+)
12 context=!HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $2
13 continue=TakeNext
14 desc=Hor i zonta l port sweep s t a r t e d from source $1 to t a r g e t port $2
15 action=eval %o ($port scans {”$1 : $2”} = {}) ; \
16 create HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $2 60 \
17 eval %o (delete $port scans {”$1 : $2”})
18

19 type=S i n g l e
20 ptype=RegExp
21 pattern=PORTSCAN FROM (\S+) TO (\S+):(\d+)
22 context=HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $3
23 continue=TakeNext
24 desc=Scanned d e s t i n a t i o n IP : $2
25 action=eval %o ($port scans {”$1 : $3”}−>{$2} = 1) ; \
26 add HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $3 %t : %s ;\
27 set HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $3 60 \
28 eval %o (delete $port scans {”$1 : $3”})
29

30 type=S i n g l e
31 ptype=RegExp
32 pattern=PORTSCAN FROM (\S+) TO (\S+):(\d+)
33 context=HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $3 \
34 && =(scalar (keys(%{$port scans {”$1 : $3” }})) > 10)
35 continue=DontCont
36 desc=$1 has scanned more than 10 d e s t i n a t i o n s
37 action=repor t HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $3 \
38 mail −s ’ Hor i zonta l port sweep from $1 t a r g e t port $3 ’ r oo t@ loca lho s t ; \
39 delete HORIZONTAL PORTSWEEP FROM SOURCE IP $1 TO TARGET PORT $3 ; \
40 eval %o (delete $port scans {”$1 : $3”})

The goal is to detect portscans from a single host to the same port on more than 10 different
target hosts. To achieve this, a context for each new combination of source host and destination
port is created, to which further events for the same combination are added. If the threshold of
10 target hosts is exceeded, a report is sent via mail. An interesting feature of SEC, which can
also be seen in this example, is the possibility to use parts of the match in a human readable
description (i.e. the use of variables in the value for desc).

Despite — or because of — its simplicity, SEC has a respectable user base and is used
successfully even in large networks (an overview of SEC users can be found in [65]). More
information about SEC can be found in [64], or in the SEC man page [66], which is very well
written.

3.4.4 OSSEC

OSSEC1 is an open source Host-based Intrusion Detection System (HIDS), consisting of a core
application, an agent for Windows systems, and a web based UI. According to the OSSEC

1Available at http://ossec.net.

http://ossec.net

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 49

website [14], the key features are file integrity checking, log monitoring, rootkit detection and
active response.1 OSSEC supports a large number of operating systems and can analyze logs from
various devices and applications, such as Cisco routers, Microsoft exchange servers, OpenSSH or
NMAP2. Among other options, possibilities for output include logging to syslog, storing events
in a database, sending email, generating reports, and of course the access via the web UI.

Although much more could be said about OSSEC, the further discussion will focus on the
part responsible for log analysis and correlation, and the interested reader is referred to the
OSSEC website [14] for more generic information.

Correlation and analysis is implemented in the analysis daemon. The analysis daemon
(analysisd) is part of the core application, which is written in C. Correlation in OSSEC is
rule-based, using XML rules (although version 2.0, released in February 2009, also allows rules
to be written directly in C).

In a first step, log messages are decoded, and information, such as IP addresses, user names,
timestamps, etc. is extracted and stored semantically (this is done according to decoders specified
in XML – please refer to [11] for more information). Next, XML rules allow the correlation based
on this information, as well as based on additional parameters, such as the frequency of a certain
event, the occurrence of other events or additional pattern matches. Each rule has a unique id,
a level (a number between 0 and 15, which indicates the priority of a match) and conditions for
matching. The action depends on the level — on level 0, no alerting is done at all, and on higher
levels, the message is logged, or even sent to an administrator via email (depending on the global
configuration).

The following listing shows an abbreviated version of the Pluggable Authentication Modules
(PAM) rule group, which is included with the OSSEC source code:3

1 <group name=”pam, sys log , ”>
2 <r u l e id=”5500” l e v e l=”0” n o a l e r t=”1”>
3 <decoded as>pam</ decoded as>
4 <d e s c r i p t i o n>Grouping o f the pam unix r u l e s .</ d e s c r i p t i o n>
5 </ r u l e>
6

7 < !−− . . . −−>
8

9 <r u l e id=”5503” l e v e l=”5”>
10 < i f s i d>5500</ i f s i d>
11 <match>au then t i c a t i on f a i l u r e ; logname=</match>
12 <d e s c r i p t i o n>User l o g i n f a i l e d .</ d e s c r i p t i o n>
13 <group>a u t h e n t i c a t i o n f a i l e d ,</group>
14 </ r u l e>
15

16 < !−− . . . −−>
17

18 <r u l e id=”5551” l e v e l=”10” f requency=”6” timeframe=”180”>
19 < i f m a t c h e d s i d>5503</ i f m a t c h e d s i d>
20 <same source ip />
21 <d e s c r i p t i o n>Mult ip l e f a i l e d l o g i n s in a smal l per iod o f time .</ d e s c r i p t i o n>
22 <group>a u t h e n t i c a t i o n f a i l u r e s ,</group>
23 </ r u l e>
24 </group>

As can be seen, the first rule, 5500, matches any PAM log messages, but since it has level
0, no alerting is done. The next rule 5503 is conditional on rule 5500, i.e. it can only match,

1I.e., OSSEC also has some Intrusion Prevention System (IPS) capabilities.
2A comprehensive list is available at http://www.ossec.net/main/supported-systems.
3The full rule group can be found in the file etc/rules/pam rules.xml in the OSSEC sources [13] and is

licensed under the GPL.

http://www.ossec.net/main/supported-systems

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 50

if rule 5500 has matched. The advantage of such a nesting is that only the first rule has to be
executed for non-PAM messages. This concept is somewhat similar to the Rete algorithm, albeit
the rule tree is created manually. According to [11], with this approach only about 1

50 of the rules
have to be executed for an average log message. The third rule, 5551, performs an escalation of
events that matched rule 5503:1 If there are at least 6 failed authentications within 180 seconds,
triggered by the same source IP address, then more aggressive alerting is done.

Other correlation operations include matching on messages that were generated during a spec-
ified time interval (e.g. to detect logins outside business hours), or the suppression of duplicate
events to avoid floods. Although OSSEC as a whole is an impressive tool, the correlation oper-
ations possible with XML rules are however rather basic. More intricate correlation is possible
with rules written directly in C. While C allows for rules of arbitrary complexity, the draw-
back is however, that the creation of a new rule is more difficult and time-consuming, and a
recompilation is required for each new rule.

More information about the correlation operations of OSSEC can be found in Chapter 11
(“General configuration options”) of the OSSEC manual2, as well as in [11].

3.4.5 OpenNMS

OpenNMS3 is an open source network monitoring platform written in Java. According to the
OpenNMS website [34], the main focuses of OpenNMS are service polling, data collection and
event and notification management.

Data collection can be done via various protocols, such as HTTP, Simple Network Man-
agement Protocol (SNMP) or Java Management Extensions (JMX), and event sources include
SNMP traps, syslog messages or internal events. Notifications can be done via email, Short
Message Service (SMS), Extensible Messaging and Presence Protocol (XMPP), or any external
program. Additionally, the data can be viewed in the web based Graphical User Interface (GUI).

OpenNMS aims to implement different correlation strategies. In the current version of Open-
NMS (version 1.6.4), correlation is based on the Drools engine, which will be discussed in Section
3.4.8, and is therefore not explained further here.

3.4.6 Prelude

PreludeIDS4 is an universal SIM application written in C. The components of Prelude provide,
among other things, log analysis, a correlation engine, event management, database access and
a web based UI written in Python. Prelude does not provide an agent, but rather gathers input
data from other security tools. Native compatibility is provided for a number of programs (such
as OSSEC, Snort, PAM, Nepenthes), and log messages from various other devices can be handled
by plugins of the Prelude Log Monitoring Lackey (LML).5 Collected messages are normalized
and represented in the standardized Intrusion Detection Message Exchange Format (IDMEF).6

In a next step, Prelude filters, classifies and correlates the data. The results can be visualized,
and reports or alerts can be generated in various formats.

1The conditions if sid and if matched sid are equivalent, according to the website of OSSEC [14].
2Available on the website of OSSEC [14], under http://www.ossec.net/main/manual.
3OpenNMS is available at http://opennms.org. Commercial support is available from http://opennms.com.
4The website of Prelude can be found under http://www.prelude-ids.com/. The source and documentation

is available from https://trac.prelude-ids.org/.
5More information about supported log formats can be found under http://www.prelude-ids.com/en/

development/documentation/compatibility/index.html. The website claims, that Prelude is able to interop-
erate with all systems available on the market.

6IDMEF is specified in RFC 4765 [24].

http://www.ossec.net/main/manual
http://opennms.org
http://opennms.com
http://www.prelude-ids.com/
https://trac.prelude-ids.org/
http://www.prelude-ids.com/en/development/documentation/compatibility/index.html
http://www.prelude-ids.com/en/development/documentation/compatibility/index.html

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 51

Correlation in Prelude is rule based, with correlation rules written in Lua.1 The following
listing from the Prelude Correlator sources [18] shows a Prelude rule to detect events outside
business hours:2

1 function bus ine s s hour (INPUT)
2

3 l o c a l t = INPUT: get (” a l e r t . c r e a t e t i m e ”)
4 l o c a l i s s u c c e e d e d = INPUT: match (” a l e r t . assessment . impact . complet ion ” , ” succeeded ”)
5

6 −− Run t h i s code only on saturday (1) and sunday (6) , or from 6:00pm to 9:00am.
7 i f i s s u c c e e d e d and (t . wday == 1 or t . wday == 6 or t . hour < 9 or t . hour > 18) then
8 l o c a l ca = IDMEF.new()
9

10 ca : s e t (” a l e r t . source ” , INPUT: getraw (” a l e r t . source ”))
11 ca : s e t (” a l e r t . t a r g e t ” , INPUT: getraw (” a l e r t . t a r g e t ”))
12 ca : s e t (” a l e r t . c l a s s i f i c a t i o n ” , INPUT: getraw (” a l e r t . c l a s s i f i c a t i o n ”))
13 ca : s e t (” a l e r t . c o r r e l a t i o n a l e r t . a l e r t i d e n t (>>). a l e r t i d e n t ” ,
14 INPUT: getraw (” a l e r t . messageid ”))
15 ca : s e t (” a l e r t . c o r r e l a t i o n a l e r t . a l e r t i d e n t (−1). a na l y z e r i d ” ,
16 INPUT: getAna lyzer id ())
17 ca : s e t (” a l e r t . c o r r e l a t i o n a l e r t . name” ,
18 ” C r i t i c a l system a c t i v i t y on day o f f ”)
19 ca : a l e r t ()
20 end
21

22 end

The function parameter INPUT contains an IDMEF event. In this example, the rule generates
an alert (the ca object, which is also an IDMEF event), if an event is detected, which indicates
a successful action outside business hours. For more complex rules, a context class allows the
creation of dynamic contexts, and makes operations, such as thresholds and timeouts possible.3

For the sake of brevity, many features of Prelude have been omitted. More information about
Prelude is available on it’s website [61] and in the documentation [19].

3.4.7 OSSIM

OSSIM4 is, as the name implies, open source SIM software, aiming at the integration of various
open source software components (such as Nmap, Nessus, Snort, Nagios, OSSEC and others) into
a comprehensive security software suite. As explained on the OSSIM website, the developers rely
on existing open source products, and add a number of additional tools, “the most important
being a generic correlation engine with logical directive support” [16]. The core of OSSIM, which
is responsible for event collection, management and correlation, as well as for risk assessment and
alerting, is written in C. Other tools provided by OSSIM include an agent (written in Python),
which can be used to collect information from hosts, a PHP based web GUI, and a Python
daemon, frameworkd, which is responsible for maintenance work and for controlling other parts
of OSSIM. For data storage, OSSIM relies on a SQL database.

One of the central goals of OSSIM is to reduce the number of false positives. To this end,
OSSIM introduces a concept of risk, based on the three values priority, reliability and asset.
Priority is a value between 0 and 5, which specifies the seriousness of an event, i.e. how harmful

1Lua is a general purpose scripting language, designed to be embeddable into other programs. More information
can be found at http://www.lua.org/.

2The listing can be found in the file plugins/lua/ruleset/business-hour.lua in the Prelude Correlator
sources [18], and is licensed under the GPL.

3Explanations and an example for a rule, which makes use of this class, can be found under https://dev.

prelude-ids.com/wiki/prelude/PreludeCorrelator.
4OSSIM is available at http://www.ossim.net. Commercial support is available from http://www.ossim.com.

http://www.lua.org/
https://dev.prelude-ids.com/wiki/prelude/PreludeCorrelator
https://dev.prelude-ids.com/wiki/prelude/PreludeCorrelator
http://www.ossim.net
http://www.ossim.com

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 52

a successful attack would be. Reliability (a value between 0 and 10) on the other hand indicates
the probability of a successful attack. Correlation can be used to modify the reliability of
matching events. Together with an asset value, a number between 0 and 5, which indicates the
(e.g. financial) value of the assets associated with the event, two risk values for an event can
be calculated, a compromise and an attack risk value.1 The risk value is the scaled product of
reliability, priority and asset, and an alarm is generated if the risk is larger or equal to one, as
can be seen in the following code fragment from the file sim-organizer.c in the OSSIM source
code [17]:

1 // check i f the source cou ld be an alarm . This i s our (e r r r) ”famous” formula !
2 event−>r i s k c =
3 ((double) (event−>p r i o r i t y * event−>a s s e t s r c * event−>r e l i a b i l i t y)) / 25 ;
4 i f (event−>r i s k c < 0)
5 event−>r i s k c = 0 ;
6 else
7 i f (event−>r i s k c > 10)
8 event−>r i s k c = 10 ;
9

10 i f (event−>r i s k c >= 1)
11 event−>alarm = TRUE;

An analogous calculation is done for the destination host.
From a high-level perspective, OSSIM provides three different types of correlation, which the

OSSIM documentation [15] lists as follows:

� Cross Correlation, between events and destination vulnerabilities

� Inventory Correlation, between events and destination characteristics

� Logical Correlation, between events from different sources

Cross correlation relies on information about vulnerabilities on the destination host, which
were gathered with Nessus. If an attack is detected (e.g. by Snort) against a host, which is
known to be vulnerable to that specific attack, the reliability is changed to 10 (i.e. it is assumed
that the attack was successful with 100% certainty).

Inventory correlation on the other hand relies on generic host information, such as OS, port,
application, protocol and version information. For instance, if the attacked port is closed on
the destination host, the reliability is changed to zero.2 As another example, if the OS on the
destination host is known to be a possible target for a given attack, the reliability is increased.

The last type is logical correlation, which relies on the backlog3 to correlate different events.
Logical correlation is generic, rule-based correlation, and unlike the name might seem to imply,
also includes non-boolean operations, such as timeouts. For logical correlation, OSSIM makes
use of XML directives, which are similar to rule groups in OSSEC, and can contain multiple,
possibly nested rules. Each new event is matched against all directives, and can thus also generate
multiple alarms. As explained in the documentation of OSSIM [15], directives can create new
events of a special type (“directive events”), which will, depending on priority and reliability,
later result in alerts.

1In short, the compromise value indicates the risk of a compromised destination host, and the attack value
indicates the risk of an attack by the source host. Please refer to the OSSIM documentation [15] for more
information.

2An application can not be exploited without successfully making a connection. As explained in [15], it might
still be possible to attack the network stack.

3The backlog contains memory about matched directives and corresponding events, i.e. it can be seen as the
internal state of the correlation engine.

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 53

The following listing from the OSSIM sources [17] shows a directive to detect SSH brute force
login attempts, with escalation based on the rate of failed logins:1

1 <d i r e c t i v e id=”20” name=” P o s s i b l e SSH brute f o r c e l o g i n attempt aga in s t DST IP”
2 p r i o r i t y=”5”>
3 <r u l e type=” de t e c t o r ” name=”SSH Authent icat ion f a i l u r e ” r e l i a b i l i t y=”3”
4 occur rence=”1” from=”ANY” to=”ANY” port f rom=”ANY” p o r t t o=”ANY”
5 t ime out=”10” p l u g i n i d=”4003” p l u g i n s i d=” 1 ,2 , 3 , 4 , 5 , 6 ”>
6 <r u l e s>
7 <r u l e type=” de t e c t o r ” name=”SSH Authent icat ion f a i l u r e (3 t imes) ”
8 r e l i a b i l i t y=”+1” occur rence=”3” from=”1:SRC IP” to=”ANY”
9 port f rom=”ANY” time out=”15” p o r t t o=”ANY”

10 p l u g i n i d=”4003” p l u g i n s i d=” 1 ,2 , 3 , 4 , 5 , 6 ” s t i c k y=” true ”>
11 <r u l e s>
12 <r u l e type=” de t e c t o r ” name=”SSH Authent icat ion f a i l u r e (5 t imes) ”
13 r e l i a b i l i t y=”+2” occur rence=”5” from=”1:SRC IP” to=”ANY”
14 port f rom=”ANY” time out=”20” p o r t t o=”ANY”
15 p l u g i n i d=”4003” p l u g i n s i d=” 1 ,2 , 3 , 4 , 5 , 6 ” s t i c k y=” true ”>
16 <r u l e s>
17 <r u l e type=” de t e c t o r ” name=”SSH Authent icat ion f a i l u r e (10 t imes) ”
18 r e l i a b i l i t y=”+2” occur rence=”10” from=”1:SRC IP” to=”ANY”
19 port f rom=”ANY” time out=”30” p o r t t o=”ANY”
20 p l u g i n i d=”4003” p l u g i n s i d=” 1 ,2 , 3 , 4 , 5 , 6 ” s t i c k y=” true ”>
21 </ r u l e>
22 </ r u l e s>
23 </ r u l e>
24 </ r u l e s>
25 </ r u l e>
26 </ r u l e s>
27 </ r u l e>
28 </ d i r e c t i v e>

With the information, that plugin_id="4003" specifies that SSHd messages should be matched,
and plugin_sid="1,2,3,4,5,6" identifies messages that belong to unsuccessful logins, the di-
rective should be mostly self-explanatory.

More information can be found on the OSSIM website [16], which also provides comprehensive
documentation.

3.4.8 Drools

Drools2 is an open source rules engine and management system, written in Java. The Drools
website describes the project as follows [12]:

Drools is a Business Rule Management System (BRMS) and an enhanced Rules
Engine implementation, ReteOO, based on Charles Forgy’s Rete algorithm tailored
for the JVM. More importantly, Drools provides for Declarative Programming and is
flexible enough to match the semantics of your problem domain with Domain Specific
Languages, graphical editing tools, web based tools and developer productivity tools.

As explained in [54], the use of a rules engine is suitable for an application, which involves
complex Boolean logic. In such cases, a rules engine can make the application much more
maintainable, as it allows the separation of logic from the source code.

Rules in Drools are specified in the Drools Rule Language (DRL), which uses the following
format:

1The listing can be found in the file etc/server/generic.xml in the OSSIM sources [17].
2Available at http://www.jboss.org/drools/.

http://www.jboss.org/drools/

3.4. EXISTING OPEN SOURCE EVENT CORRELATION SOFTWARE 54

1 rule ”<unique name>”
2 <a t t r i b u t e s >
3 when
4 <cond i t i ons >
5 then
6 <act ions >
7 end

The rules thus specify condition-action relations, as discussed in Section 3.3.2. With optional
attributes, the behaviour of the rule can be influenced. An important attribute is the salience, a
number which allows to influence the order, in which rules are executed (rules with the highest
salience are executed first). An example for the use of business rules with Drools can be found
in [54].

Besides this “native” language, Drools also allows the use of Domain Specific Languages
(DSLs) to make rules more understandable. Furthermore, Drools comes with an Eclipse based
rule IDE, which simplifies the textual or graphical specification of DRL and DSL rules.

More information about Drools is available on it’s website [12]. The website also provides a
detailed documentation of Drools, including some examples.

3.4.9 Esper

Esper1 is an open source component for building real-time ESP and CEP applications in Java
(additionally, NEsper, written in C#, can be used with .NET). Although Esper is not primarily
targeted at network event correlation, it is a CEP and ESP toolkit certainly worth mentioning.

Esper is not domain-specific and supports a wide variety of correlation operations, both for
CEP and ESP. Examples include logical and temporal operations, filtering, averaging, aggre-
gation, rate limiting, thresholding, sorting or merging. According to its website [28], “typical
application areas are business process management and automation, finance, network and appli-
cation monitoring and sensor network applications.”

Event data can be processed with statements in an SQL-like Event Processing Language
(EPL)2, with events represented by Java Beans, Plain Old Java Objects (POJOs), Maps3 or XML
objects. Custom actions can be written as POJOs, which are triggered, when a corresponding
condition matches [5]. The FAQ of Esper, available on it’s website [28], describes the function
of Esper as follows:

The Esper engine works a bit like a database turned upside-down. Instead of storing
the data and running queries against stored data, the Esper engine allows applications
to store queries and run the data through.

In [5], the following example is given for the use of such a query:

Assume a trader wants to buy Google stock as soon as the price goes below some
floor value – not when looking at each tick but when the computation is done over a
sliding time window – say of 30 seconds. Given a StockTick event bean with a price
and symbol property and the EQL “select avg(price) from StockTick.win:time(30
sec) where symbol=’GOOG’”, a listener POJO would get notified as ticks come in to
trigger the buy order.

1Available at http://esper.codehaus.org.
2In the context of Esper, the EPL is sometimes also called Event Query Language (EQL).
3I.e. java.util.Map objects, which map keys to values.

http://esper.codehaus.org

3.5. COMMERCIAL EVENT CORRELATION PRODUCTS 55

Given a set of EQL statements (which can also be added and removed dynamically, while the
engine is running), Esper can decide itself, which events need to be kept in memory, and will
only keep the minimum number of events that is required (e.g. for a sliding window) [28].

More information can be found on the website of Esper [28], which also provides comprehen-
sive documentation.

3.4.10 Many Other Applications

As mentioned before, the list of presented applications is by no means complete. A search on
SourceForge or similar sites reveals many more products, such as (the product descriptions are
taken from the respective websites):

� RuleCore1 – “RuleCore is an event-driven reactive (ECA style) rule engine with GUI tools,
all written in Python. RuleCore triggers actions by detecting complex patterns of events.”
(Although RuleCore is an ambitious and interesting project, the open source version is no
longer under active development, and the project is now commercial [65].)

� OpenSIMS2 – “We’ve integrated Nmap, Snort, Nagios, and Nessus into a common event
correlation framework. This means you can take events from your existing open source
network tools.”

Even more tools, both commercial and open source, are described in [55]. Furthermore, many
ambitious projects for rules engines can be found, e.g. many rules engines written in Java.3

3.5 Commercial Event Correlation Products

Just like in the open source world, there is also an abundance of commercial event correlation
products available. For the sake of brevity, only a few selected products will be presented here.

3.5.1 IBM Tivoli Enterprise Console

Tivoli Enterprise Console (TEC)4 is the part of IBM’s comprehensive Tivoli Management Frame-
work (TMF) responsible for event management and correlation. TEC is a general purpose
application, which can be used to correlate business, system or network data. While TEC is
commercial software, some information is freely available from the product manuals [41], which
are openly accessibly at IBM’s website.

For network management, TEC can be integrated with IBM NetView5 (additionally, NetView
also provides some event filtering and correlation capabilities itself). The following discussion
will however focus on TEC.

In TEC, correlation is rule based, using a high-level language, which is later translated to
Prolog, as explained in the manual [41]:

Rules are written in a high-level language called the rule language. The rule language
provides a simplified interface to the Prolog programming language, which is the lan-
guage actually used internally by the rule engine. Your rules in the rule language are

1http://sourceforge.net/projects/rulecore/
2http://opensims.sourceforge.net/
3Some of them are listed at http://java-source.net/open-source/rule-engines.
4The product web site can be found at http://www-01.ibm.com/software/tivoli/products/

enterprise-console/.
5NetView can be found at http://www-01.ibm.com/software/tivoli/products/netview/.

http://sourceforge.net/projects/rulecore/
http://opensims.sourceforge.net/
http://java-source.net/open-source/rule-engines
http://www-01.ibm.com/software/tivoli/products/enterprise-console/
http://www-01.ibm.com/software/tivoli/products/enterprise-console/
http://www-01.ibm.com/software/tivoli/products/netview/

3.5. COMMERCIAL EVENT CORRELATION PRODUCTS 56

precompiled into Prolog source code, which is then compiled into Prolog executable
files.

The generic structure of a rule is as follows [41]:

1 r u l e t y p e : rule name :
2 (
3 d e s c r i p t i o n : ’ r u l e d e s c r i p t i o n ’ ,
4 event : event f i l t e r ,
5 ac t i on : act ion1 ,
6 ac t i on : act ion2 ,
7 . . .
8) .

This ECA-format allows filtering or duplicate removal, but also more complex correlation op-
erations, such as temporal and context dependent operations. Additionally, Prolog can also be
used directly in TEC rules [41].

According to [7,8], TEC was “one of the first systems that introduced ‘deep’ event correlation
technologies”, and is further noteworthy for

� allowing self-modifiable events,

� using a distributed filtering approach,

� using a standard programming language (Prolog), rather than an ad-hoc solution.

On the other hand, [8] also argues, that the complexity introduced by Prolog was part of the
reason, why TEC was essentially too difficult to use. According to [8], TEC will be discontinued
in 2012, in favor of IBM Tivoli Netcool/OMNIbus, which uses a different correlation approach.

As TEC is a very comprehensive product, a detailed discussion would be beyond the scope
of this thesis. More information can however be found in [41], [6] and [8].

3.5.2 HP Event Correlation Services

HP Event Correlation Services (ECS)1 is an event correlation product, which is part of HP’s
OpenView software suite. For network monitoring, HP ECS is integrated with HP’s Network
Node Manager (NNM) (which has, on the other hand, also been used with SEC [65]). The
main part of HP ECS is the ECS Engine, which, according to the product’s data sheet [39],
“transforms and processes event streams according to the installed correlations”.

Even though HP ECS can be seen as a rule-based system [52, 65], it does not rely on ECA
rules, but instead uses rules to control the event flow. HP provides a graphical rule editor, called
ECS Designer, which allows the visual design of rules, so called “correlation circuits”. These
circuits represent the event flow in a flow graph, as a network of processing nodes [7]. Nodes
can be used for simple operations, such as filtering the event stream; more complex nodes can
be created as a combination of multiple primitive nodes [57].

Internally, an EPL, which is simply called Event Correlation Description Language (ECDL),
is used for rule specification. This language can however not be used directly, as explained in an
article in the HP Journal [57]:

The ECS Designer ensures that the circuit designer does not need to understand
this language in great detail. The circuit is specified by the visual interconnection of
selected nodes. Node parameters are specified wherever possible using simple ECDL
constructs and supplied library functions written using ECDL or actually built into

1The product website can be found under http://www.openview.hp.com/products/ecs/.

http://www.openview.hp.com/products/ecs/

3.6. COMPARISON OF EXISTING EVENT CORRELATION SOFTWARE 57

ECDL. Advanced users are able to create specialized reusable functions. The ECDL
code produced by the ECS Designer is encrypted in source form and compiled for
downloading to the correlation engine. Direct coding using ECDL is not supported
and cannot be compiled.

More information about HP ECS can be found in [57] and in [52].

3.5.3 Many Other Applications

Many more products are available. Information is however often difficult to obtain. The following
list is intended as a collection of pointers, for further investigation (the product descriptions are
taken from the respective websites).

� TriGeo Security Information Management (SIM)1 — “an award-winning product that com-
bines real-time log management, event correlation and endpoint security with a unique
active response technology.”

� Tenable Log Correlation Engine2 — “aggregates, normalizes, correlates and analyzes event
log data from the myriad of devices within your infrastructure.”

� ArcSight SIEM Platform3 — “an integrated set of products for collecting, analyzing, and
managing enterprise event information.”

� Symantec Security Information Manager4 — “can collect and normalize a broad scope
of event data and correlate the impact of incidents based on the criticality to business
operations or level of compliance to various mandates.”

More applications are discussed in [52] and [55].

3.6 Comparison of Existing Event Correlation Software

Tables 3.5 and 3.6 provide an overview of the features of the discussed event correlation appli-
cations and toolkits. Rather than trying to list all capabilities, Table 3.6 is however meant to
point out the most noteworthy features only.

1http://www.trigeo.com/products/
2http://www.tenablesecurity.com/products/lce/
3http://www.arcsight.com/products/
4http://www.symantec.com/business/security-information-manager

http://www.trigeo.com/products/
http://www.tenablesecurity.com/products/lce/
http://www.arcsight.com/products/
http://www.symantec.com/business/security-information-manager

3.6. COMPARISON OF EXISTING EVENT CORRELATION SOFTWARE 58

S
o
ft

w
a
re

D
o
m

a
in

L
a
n
g
u
a
g
e

U
I

L
ic

en
se

H
o
m

ep
a
g
e

S
w

a
tc

h
L

o
g

m
o
n
it

o
ri

n
g

P
er

l
C

L
I

G
P

L
h
t
t
p
:
/
/
s
w
a
t
c
h
.
s
o
u
r
c
e
f
o
r
g
e
.
n
e
t

L
o
g
S
u
rf

er
L

o
g

m
o
n
it

o
ri

n
g

C
C

L
I

(O
p

en
S
o
u
rc

e)
1

h
t
t
p
:
/
/
w
w
w
.
c
r
y
p
t
.
g
e
n
.
n
z
/
l
o
g
s
u
r
f
e
r
/

S
E

C
G

en
er

a
l

p
u
rp

o
se

P
er

l
C

L
I

G
P

L
h
t
t
p
:
/
/
k
o
d
u
.
n
e
t
i
.
e
e
/
~
r
i
s
t
o
/
s
e
c
/

O
S
S
E

C
L

o
g

b
a
se

d
ID

S
C

,
P

H
P

W
eb

U
I

G
P

L
h
t
t
p
:
/
/
o
s
s
e
c
.
n
e
t

O
p

en
N

M
S

N
et

w
o
rk

M
o
n
it

o
ri

n
g

J
av

a
W

eb
U

I
G

P
L

h
t
t
p
:
/
/
o
p
e
n
n
m
s
.
o
r
g

P
re

lu
d
e

S
IM

C
,

P
y
th

o
n

W
eb

U
I

G
P

L
h
t
t
p
:
/
/
w
w
w
.
p
r
e
l
u
d
e
-
i
d
s
.
c
o
m

O
S
S
IM

S
IM

C
,

P
y
th

o
n
,

P
H

P
W

eb
U

I
G

P
L

2
h
t
t
p
:
/
/
o
s
s
i
m
.
n
e
t

D
ro

o
ls

R
u
le

s
en

g
in

e
J
av

a
A

P
I

A
L

h
t
t
p
:
/
/
w
w
w
.
j
b
o
s
s
.
o
r
g
/
d
r
o
o
l
s
/

(N
)E

sp
er

C
E

P
,

E
S
P

J
av

a
(C

#
)

A
P

I
G

P
L

h
t
t
p
:
/
/
e
s
p
e
r
.
c
o
d
e
h
a
u
s
.
o
r
g

IB
M

T
E

C
G

en
er

a
l

p
u
rp

o
se

J
av

a
G

U
I,

W
eb

U
I

(C
o
m

m
er

ci
a
l)

h
t
t
p
:
/
/
w
w
w
-
0
1
.
i
b
m
.
c
o
m
/
s
o
f
t
w
a
r
e
/
t
i
v
o
l
i
/

H
P

E
C

S
G

en
er

a
l

p
u
rp

o
se

?
G

U
I

(C
o
m

m
er

ci
a
l)

h
t
t
p
:
/
/
o
p
e
n
v
i
e
w
.
h
p
.
c
o
m
/
p
r
o
d
u
c
t
s
/
e
c
s
/

T
ab

le
3.

5:
O

ve
rv

ie
w

of
ev

en
t

co
rr

el
at

io
n

so
ft

w
ar

e.

S
o
ft

w
a
re

In
p
u
t

F
o
rm

a
ts

E
v
en

t
C

o
rr

el
a
ti

o
n

A
p
p
ro

a
ch

C
a
p
a
b
il
it

ie
s

a
n
d

S
tr

en
g
th

s

S
w

a
tc

h
L

in
e

b
a
se

d
R

u
le

b
a
se

d
(p

la
in

-t
ex

t
ru

le
s)

A
d
va

n
ce

d
fi
lt

er
in

g
o
f

lo
g

m
es

sa
g
es

L
o
g
S
u
rf

er
L

in
e

b
a
se

d
R

u
le

b
a
se

d
(p

la
in

-t
ex

t
ru

le
s)

A
d
va

n
ce

d
fi
lt

er
in

g
a
n
d

g
ro

u
p
in

g
o
f

lo
g

m
es

sa
g
es

S
E

C
L

in
e

b
a
se

d
R

u
le

b
a
se

d
(p

la
in

-t
ex

t
ru

le
s)

C
o
m

p
le

x
co

rr
el

a
ti

o
n

o
f

li
n
e-

b
a
se

d
in

p
u
t

b
a
se

d
o
n

si
m

p
le

o
p

er
a
ti

o
n
s

O
S
S
E

C
L

in
e

b
a
se

d
R

u
le

b
a
se

d
(u

si
n
g

X
M

L
a
n
d

C
)

F
il
te

ri
n
g
,

th
re

sh
o
ld

in
g
,

te
m

p
o
ra

l
o
p

er
a
ti

o
n
s,

es
ca

la
ti

o
n
,

..
.

O
p

en
N

M
S

V
a
ri

o
u
s

R
u
le

b
a
se

d
(u

si
n
g

D
ro

o
ls

)
E

v
en

t
co

rr
el

a
ti

o
n

b
a
se

d
o
n

D
ro

o
ls

P
re

lu
d
e

V
a
ri

o
u
s

R
u
le

b
a
se

d
(u

si
n
g

L
u
a
)

S
ta

n
d
a
rd

iz
ed

ev
en

t
fo

rm
a
t

(I
D

M
E

F
),

g
en

er
a
l

p
u
rp

o
se

E
P

L
(L

u
a
)

O
S
S
IM

V
a
ri

o
u
s

V
u
ln

er
a
b
il
it

y,
in

v
en

to
ry

,
ru

le
b
a
se

d
A

u
to

m
a
ti

c
co

rr
el

a
ti

o
n

o
f

ev
en

ts
w

it
h

g
a
th

er
ed

v
u
ln

er
a
b
il
it

y
d
a
ta

D
ro

o
ls

V
a
ri

o
u
s3

R
u
le

b
a
se

d
(D

R
L

,
a
s

w
el

l
a
s

D
S
L

s)
R

et
e

b
a
se

d
,

a
ll
ow

s
th

e
cr

ea
ti

o
n

o
f

D
S
L

s,
E

cl
ip

se
b
a
se

d
G

U
I

(N
)E

sp
er

V
a
ri

o
u
s3

R
u
le

b
a
se

d
(S

Q
L

-s
ty

le
ru

le
s)

S
Q

L
-l

ik
e

st
a
te

m
en

ts
fo

r
h
ig

h
-s

p
ee

d
E

S
P

a
n
d

C
E

P

IB
M

T
E

C
V

a
ri

o
u
s3

P
ro

lo
g

b
a
se

d
ru

le
s

en
g
in

e
D

ee
p

co
rr

el
a
ti

o
n
,

p
ow

er
fu

l
g
en

er
a
l

p
u
rp

o
se

la
n
g
u
a
g
e

(P
ro

lo
g
)

H
P

E
C

S
V

a
ri

o
u
s3

N
et

w
o
rk

o
f

p
ro

ce
ss

in
g

n
o
d
es

G
ra

p
h
ic

a
l

d
es

ig
n

o
f

ev
en

t
fl
ow

ci
rc

u
it

s
w

it
h

p
ro

ce
ss

in
g

n
o
d
es

T
ab

le
3.

6:
E

ve
nt

co
rr

el
at

io
n

ca
pa

bi
lit

ie
s

of
ex

is
ti

ng
so

ft
w

ar
e.

1
L

o
g
S

u
rf

er
u

se
s

it
’s

o
w

n
li
ce

n
se

,
w

h
ic

h
a
ll
o
w

s
re

d
is

tr
ib

u
ti

o
n

a
s

so
u

rc
e

co
d

e
o
r

in
b

in
a
ry

fo
rm

.
2
A

s
o
f

M
a
rc

h
1
3
th

2
0
0
9
,

O
S

S
IM

sw
it

ch
ed

fr
o
m

th
e

B
er

k
el

ey
S

o
ft

w
a
re

D
is

tr
ib

u
ti

o
n

(B
S

D
)

li
ce

n
se

to
G

P
L

.
3
U

su
a
ll
y

in
te

g
ra

te
d

w
it

h
o
th

er
p

ro
d

u
ct

s,
w

h
ic

h
d

el
iv

er
in

p
u

t
d

a
ta

.

http://swatch.sourceforge.net
http://www.crypt.gen.nz/logsurfer/
http://kodu.neti.ee/~risto/sec/
http://ossec.net
http://opennms.org
http://www.prelude-ids.com
http://ossim.net
http://www.jboss.org/drools/
http://esper.codehaus.org
http://www-01.ibm.com/software/tivoli/
http://openview.hp.com/products/ecs/

Chapter 4

Specification

This chapter discusses the specification of our Event Correlation Engine (ECE). Although the
main purpose of the presented ECE is to deal with event patterns, such as those identified in
Section 2.3, and the ECE is targeted mainly at the correlation of log messages and network
events, we try to keep the design as versatile as possible without making the configuration too
complex. The goal is to find a good trade-off between flexibility and ease of use.

Various of the applications discussed in Section 3.4 influenced the design, notably SEC,
OSSIM and OSSEC, but also other tools, such as ruleCore and Esper. Additionally, suggestions
and comments from Open Systems engineers provided valuable input. Furthermore, the available
events and the identified patterns served as an additional guideline, to decide, which correlation
operations and elements are required.

From a developers perspective, this chapter answers the question, what the correlation engine
should do, whereas Chapter 5 will explain, how it is done.1

4.1 Requirements and Assumptions

Before specifying a suitable event correlation engine, it makes sense to take a look at the re-
quirements again. From a high-level perspective, the main goals for the correlation engine are
to keep the number of false positives low without generating any additional false negatives, and
to help the operator find the root cause for a problem faster. To achieve this, the correlation
engine should correlate incoming events and detect known patterns, as identified in Section 2.3.

For a specification, more detailed requirements are necessary. The following requirements are
specified in the thesis assignment (cf. Appendix D):

� Quasi real-time processing of incoming events

� Flexible configuration, with the possibility to extend the engine for future constellations in
an uncomplicated way, and without reprogramming the whole engine

� Configuration language, which allows to cover all arising event patterns, and which supports
different types of alerting

� Efficiency, scalability, low resource consumption
1From a users perspective, the question, what needs to be correlated was already answered in Chapter 2, and

this chapter answers, how the events can be correlated — alas, there is some ambiguity.

4.1. REQUIREMENTS AND ASSUMPTIONS 60

� Ability to take additional information sources into account (besides the events themselves)

� Distributed architecture with correlation in two steps, on the source host and at a central
location

From the considerations in Chapters 2 and 3, as well as from feedback by Open Systems
engineers, the following additional requirements can be identified:

� Reproducibility: The behaviour of the ECE should be deterministic and depend solely
on the input events, the rules and the internal state (which again should depend only on
past events and the rules). If the correlation engine is run multiple times with the same
input data, the result should be the same each time.1 As it is also possible to make use of
external information sources, reproducibility is however not fully under the control of the
correlation engine. Thus, if external information sources are used (which may e.g. be time
dependent), the results are not necessarily reproducible.

� Traceability: The decisions of the ECE should be understandable and traceable (and the
correlation engine should support the traceability with descriptions and references to rules,
for each change to an event).

� Since there are a lot of hosts, it is not only important that the rules can be created easily, but
also their handling should be simple (e.g., it should be possible to specify a rule, that will
be executed on various hosts, without having to specify a rule for each host individually).

� Generalized distributed architecture: Rather than making a separation between agent and
central correlation engine, it would be nice to be able to use the same application every-
where. Rather than just allowing two correlation steps, this would make it possible to do
correlation in any number of steps, as long as the network of processing nodes forms a tree,
where the events flow from the leaves towards the root node.

On the other hand, several criteria are explicitly and intentionally ignored, such as the fol-
lowing ones:

� Integrity and authenticity: It is assumed, that the event sources and the rule repository
are trustworthy, and this is not verified in any way.

� Communication confidentiality: There is no protection against eavesdropping.

� Input formats: Although it should be possible to add new input data formats easily, it is
not the goal to support as many input formats as possible by default.

� Rule repository: As a proof-of-concept, some rules for the identified patterns will be speci-
fied. It is however not the goal to provide a large set of rules along with this thesis, as this
requires a lot of both time and experience.

1Assuming, there are no dependencies on the absolute time, and no external factors beyond the control of the
correlation engine. Furthermore, there should also be no dependencies on the current CPU usage, e.g. because
the order of processed events depends on race conditions between input events and internally generated events
(e.g. by timeouts). While this is hard to avoid in practice, it could be avoided in simulation, by either making
all input events available at the start, or by having the correlation engine and input event generation share a
common time base, which is independent of the real time.

4.2. HIGH-LEVEL FUNCTION MODEL 61

The interpretation of the fact, that these criteria will be ignored for the moment should
however not be, that they are not important1, but rather, that these qualities should be asserted
by another layer, which is not part of the correlation engine (e.g., integrity of the communication
should be guaranteed by TCP and confidentiality could be achieved by using Transport Layer
Security (TLS) or a VPN). Furthermore, some parts (like the rule repository) simply require
more work, beyond the scope of this thesis.

4.1.1 A Case for a Rule Based Correlation Engine

Even though many of the approaches discussed in Section 3.3 have advantages over a rule based
engine, the solution presented here is in fact a rule based approach. The main reason for this
decision is that reproducibility and traceability are not only important requirements, but also
a strength of rule-based approaches (and difficult to achieve with many other approaches). As
explained in Section 3.3.2, a correlation engine with rules operating on clearly defined and com-
prehensible input data is easy to understand for humans, and the decisions of the correlation
engine are thus understandable, especially if the correlation engine indicates, which rule was
responsible for a specific decision.

Since a false positive results merely in more work, whereas a false negative can result in
serious problems, it is preferable to accept false positives. This is another point in favor of a
rule-based system, because the correlation process can start with an empty rule repository, where
the engine simply outputs events as they appear at the input, and rules can be gradually and
carefully added.

Another strong point of rule-based approaches is their modularity — since it is easy to
separate the rules into independent sets, they can also be distributed on different hosts easily.
Furthermore, modularity is essential to allow multiple operators to work with the same system,
because the possibility to specify rules independently of the rest of the system allows an operator
to add a new rule, without having to know the whole system.

One of the major points of criticisms regarding rule-based approaches is the large maintenance
effort, which is needed to keep the rule repository up to date. The analysis in Chapter 2 however
revealed, that there are not too many frequent event patterns. As the corresponding events
currently have to be handled manually every time they occur, having to specify a rule manually
once for each pattern is certainly acceptable, as long as the creation of the rule is not overly time
consuming. Additionally, it can be expected, that the number of different patterns grows merely
with the number of managed services, rather than with the number of hosts, and manual rule
creation should thus scale well.

4.2 High-level Function Model

The presented approach uses a network of correlation nodes, which form a tree, where the events
flow from the leaves towards the root node. Each node represents an independent correlation
engine, which is agnostic of the other nodes, and knows only, what event formats to expect at
the input, and where to deliver output events. A complete setup might look as shown in Figure
4.1. Although event sources and correlation nodes are separated in the diagram, this separation
is merely a logical one, and correlation engine and event source could just as well be running on
the same piece of hardware. As explained in Section 3.3.1, in that case it is however important
to avoid unwanted influences between the correlation engine and the host. From the root node,

1In fact, they are definitely important – for example, if an arbitrary rule could be injected, hosts where the
correlation engine is running could easily be compromised, as the rules allow the execution of arbitrary scripts.

4.2. HIGH-LEVEL FUNCTION MODEL 62

Tree of correlation enginesEvent sources

Root node,
Global correlationPreprocessing,

Local correlation

Logging

Ticketing

Alert ing

Rule repository

Figure 4.1: Event correlation process.

the events can be entered into a ticketing system for manual handling, stored in a database for
logging, or alerting can be done.

The function of each individual node depends only on the input (input events, as well as
information from external sources besides the events), the internal state and the rules. The
consequence of an executed rule can be the creation, modification or deletion of an event, or a
modification of the internal state. Because a direct interaction with the environment may be
desirable in some cases, there is one exception however: the correlation engine allows the use of
plugins, which may interact with the environment. There are two types of plugins, condition and
action plugins. Condition plugins provide additional possibilities to specify conditions, such as
a condition on the current weekday, or on the return value of an executed script, whereas action
plugins provide possibilities for actions with external effects, such as the execution of a script, or
the sending of an email. Furthermore, action plugins can also be used to enrich the events with
external information.

A single processing node shall work roughly as shown in Figure 4.2. The translators receive
events from the network or from a local file and transform input events from their native format
(e.g. syslog) to the internal event format (this process will be explained more detailed in Section
4.5). The input queue stores the events from the translators, until they are picked up by the
correlation engine core, which processes the events according to the rules in the rule repository.
The rule repository contains a local copy of all rules from the central repository, which are
relevant for that specific node. If events may be needed later, they are stored temporarily in the
event cache. Once the processing is over, events are stored in the output queue, until they can
be forwarded across the network.

The correlation engine core is a reactive Event Condition Action (ECA) rule engine, which
selects rules based on incoming events, and executes them sequentially. The rules can make use
of the input events, the events in the cache, internal state and the plugins, to determine, what
output events to generate. Besides selecting, sorting and executing rules, it is also the task of the
correlation engine core to manage events and contexts, based on the rules. Section 4.7 describes
the rule format, which will hopefully also make the task of the correlation engine core more
understandable.

4.3. EVENT FORMAT 63

Input
queue

Output
queue

Input
translat ion

Correlation
engine core

Condition
plugins

Action
plugins

Local rule
repository

Event
cache

Output
eventsInput

events

Figure 4.2: Overview of a single event correlation node.

The queues are specified as FIFO queues for the moment. If it should turn out, that another
approach is more adequate (e.g. giving priority to certain events), more complex approaches will
be evaluated later.

4.3 Event Format

This section describes the event format. For the moment, the representation of the events in the
program, on the network or in a data base is not too important, and it will be assumed that
events are simply records with various fields (members), even though an implementation might
just as well store the events as objects, or in other formats. An event contains the following
fields:

name An immutable string indicating the event family. The string does not have to follow a
specific convention, and any format is acceptable, such as the format of the known event
NIC:ETHERNET:LINKDOWN, or another format, such as service-xy-down.

description A human readable description of the event.

id An event ID, which is immutable and unique across all events from all hosts.1

type A string indicating the event type. The following types exist:

� raw – events, which were created directly by an event source, i.e. all events, which
were not created by the correlation engine.

1This can be achieved by using a cryptographic hash of the host name, the current time (with full precision,
so that two events generated right after each other on the same host get different hashes, even if the random
number happens to be the same for both) and date and a random number as the ID. The hash length should
be at least 128 bits. In that case, if we assume (rather pessimistically) that n = 1015 events will be generated
throughout the lifetime of the correlation engine, the probability for duplicates according to the birthday paradox
approximation formula from [70] would still only be (assuming, there are no collisions in the input data) p ≈
1− exp(−n(n− 1)/(2 ∗ 2128)) ≈ 1.5 ∗ 10−9‘. With 64 bits on the other hand, duplicates would be almost certain.

4.3. EVENT FORMAT 64

� compressed – an event representing multiple identical raw events.

� aggregated – an event, that collects multiple other events.

� synthetic – an event created directly by a rule.

� timeout – derived events resulting from a context timeout.

� internal – events, which were generated by the correlation engine itself, because of a
special condition (e.g. a non-fatal error).

There is a separate namespace for each event type, i.e. two events of different types can
have the same name without conflict.

status A value indicating the status of the event, which can be:

� active – the event requires further handling.

� inactive – the event requires no further handling (this can also be seen as an instruction
to a ticketing system, that no ticket needs to be opened because of this event).

While both active and inactive events can be used for further correlation, only active events
have the possibility to directly trigger rules.

count For an event of the type compressed, this field lists the number of events represented by
this event.

host The name of the host, where the event was generated.

creation An integer number, indicating when the event was created. Time and date is saved as
the number of seconds since January 1st 1970 (Unix time).

attributes An unordered list of arbitrary tuples (key/value pairs), specifying additional event
attributes.

references An optional list of IDs of events, which are connected to this event. There are three
types of references: Child references (pointing to events, which somehow depend on the
current event or were caused by the current event), parent references (pointing to events, on
which the current event depends, or which were responsible for the creation of the current
event) and cross references (pointing to related events on the same level). Just like the
status, references can be seen as an instruction for the ticketing system, indicating how
to represent events (e.g. if an event has a parent reference, it should end up in the same
ticket, and be visually grouped below its parent).

history An ordered list of quintuples, describing the sequence of modifications to the event.
The quintuples contain the following information:

� rule – group and rule name, indicating, which rule was responsible for the change.

� host – host name, indicating, where the change was made.

� timestamp – indicating, when the change was made.

� fields – an optional list of fields, indicating, which fields were changed.

� reason – optional human readable description of the reason for the change.

For events created by the correlation engine, the first history entry references the rule
responsible for the creation.

4.4. EVENTS GENERATED BY THE CORRELATION ENGINE ITSELF 65

Additionally, the following fields are used internally:

arrival The time, when the event arrived at the local node. If the event was generated locally,
the arrival time is equal to the creation time.

local A boolean value, indicating, whether the event is a local event only (which will not be
forwarded).

As can be seen, not all fields are required, and we allow the modification of certain fields.
Table 4.1 provides an overview of the fields and their properties, and Table 4.2 lists the internal
fields.

Field Type Mandatory Mutable Applicable event types
name String Yes No All
description String Yes No All
id String Yes No All
type String Yes No All
status String Yes Yes All
count Integer No Yes Compressed
host String Yes No All
creation Integer (Unix time) Yes No All
attributes List of tuples No Yes All
references List of IDs No Yes All
history List of quintuples No Yes All

Table 4.1: Event record fields.

Field Type Mandatory Mutable Applicable event types
arrival Date & Time Yes No All
local Boolean Yes Yes All

Table 4.2: Internal event record fields.

The corresponding Document Type Definition (DTD) for a representation of events in XML,
along with some examples, can be found in Appendix B.1. The XML format can be used to
store events in a file, and possibly also for the transportation of events across a network.

4.4 Events Generated by the Correlation Engine Itself

Some events can be generated by the correlation engine itself. The following events, which are
local and have the type internal, exist:

� CE:STARTUP – generated once, when the correlation engine is started.

� CE:SHUTDOWN – generated, before the correlation engine is shut down.

Additionally, the following events can be generated, which are of the type internal (i.e.
generated by the correlation engine), but not local (i.e. they will be forwarded).

4.5. INPUT TRANSLATION 66

� CE:CACHE:LIMIT:EXCEEDED – generated, if the number of events in the cache exceeds the
specified maximum.

� CE:STARTUP:AFTERCRASH – generated additionally to the CE:STARTUP event, if the correla-
tion engine is started after an unclean shutdown.

4.5 Input Translation

The input translation is responsible for translating input data into the event format specified in
Section 4.3. The translator specified here is targeted only at line based input (such as syslog
messages); other translators may be presented later.

4.5.1 Line-based Input Rule Format

The translator is based on regular expression matching, similarly to what is used in other appli-
cations, such as SEC. Furthermore, the specification allows nested matches, which are evaluated
only if the parent matches, similarly to correlation rule dependencies in OSSEC.

Just like the format of correlation rules and events, the format for input translation rules
is XML-based. The root element has the name translation linebased. This element may
contain any number of match elements, which must contain an attribute regexp, specifying a
pattern to match input lines (the format of the used regular expressions is explained in [32]).
The match element may contain event descriptions, actions or nested match elements. The
contained elements are evaluated only if the regular expression given in the enclosing match
element matched the current input line.

Event descriptions provide information about the event, which will be created. The following
XML elements are available for descriptions:

description A human readable description of the event. If omitted, the description will be
empty.

host The name of the host, where the event was created. If omitted, the name of the local host
will be used.

attribute An attribute with additional information. This element must have an XML attribute
name, indicating the name of the attribute (i.e. the key of the key/value pair). As an event
may contain any number of attributes, this element can also be used multiple times, with
different names (using the same name overwrites the previous value).

datetime The date and time of the event creation. This element must have an attribute format,
with a string describing th time format (this string follows the syntax described in [33],
which is very similar the syntax of the format string used by the Unix utility date). As
some log messages only provide month and day, the additional attribute use current year
can be used with the value true, to use the current year with the specified month, day and
time. If the datetime element is omitted entirely, the current date and time is used.

All of the above elements may contain a mix of text and zero or more matchgroup elements,
which can be used to recall parts of the regular expression matched by the enclosing match
element, by specifying either the name or the number in the attribute group.

The following actions are allowed inside a match object:

4.6. CONCEPTS 67

create Create an event with the name given as content of the element and the parameters
specified so far (i.e. all parameters specified inside the current and enclosing match blocks,
but not parameters from previous match blocks). The optional attribute status can be
used with the values active (default) or inactive to create an active or inactive event.

drop Stop the processing of the current input line and continue with the next one. Using a drop
element is not strictly necessary, as no event will be generated, unless a create element is
encountered somewhere — but it can be used to speed up the input translation process, as
it avoids having to evaluate subsequent match elements.

Input lines are processed sequentially, and the processing starts with the first match element,
which is evaluated recursively. If no create or drop element is encountered inside the first match
element, processing goes on with the second match element, and so on. Processing of a given
line ends, as soon as either a drop or a create element is encountered. By default, no event is
created, but it is of course possible to use a catch-all match element, with a regular expression,
such as “.*”.

The corresponding DTD and an example of translation rules to match SSHd log messages
can be found in Appendix B.2.

4.6 Concepts

Before explaining the rule format, it makes sense to comment on some concepts, as the further
description builds on these concepts.

4.6.1 Contexts

A context represents an internal state of the correlation engine. For instance, if the correlation
engine receives HOST:UNREACHABLE events for several hosts, and derives, that a specific ISP link
must be down, this knowledge can be represented by a context. This concept is used by various
event correlation applications, e.g. by SEC.

Contexts are dynamic. They are always created by a rule, and removed either because they
are deleted by a rule, or because their specified lifetime (which can also be infinite) is over. In
the second case, a timeout event is generated (if so specified, when the context was created).

Besides representing an internal state, there are two additional uses for a context in our
correlation engine. First, events can be associated with a context, to recall them later. In the
above example for instance, the HOST:UNREACHABLE events could be associated with the created
context. If, e.g., later another event is suppressed due to this context, the failing ISP link can
be given as reason for the suppression, and the associated events can be referenced.

The second additional use of a context is it’s counter, which can be used as a condition by
rules. As an example, the counter of a context can be used to create a threshold, without having
to store events in the cache, by creating a context with a silent timeout, when the first event
of a given type arrives (“first” simply means here, that no context already exists), increasing
its counter value upon the arrival of each new event, and checking, whether the threshold is
exceeded each time. This would yield a threshold with a fixed window and a dynamic start,
whereas the count element (explained below) can be used to create a threshold with a sliding
window (cf. Appendix A).

4.7. RULE FORMAT 68

4.6.2 Time

There are two different time values associated with an event – the creation time and the arrival
time (i.e. the time, when the event arrived at the local node). It is important to realize, that
the order of events in the stream may vary, depending on whether the events are sorted by the
creation or the arrival time, i.e. event A may have been generated before event B, but still arrive
at a specific node later. Many elements, which require a time value thus allow for an attribute,
such as sort by, to specify, whether the creation or the arrival time should be used.

Whenever a time value is required, either an integer can be specified (which will be interpreted
as seconds), or the letters s, m, h or d can be used (e.g. 12h), to indicate that seconds, minutes,
hours or days are meant.

4.6.3 Event Caching

Some events need to be kept in the event cache, because they are needed later. This can be done
either by keeping a copy of the event, or by delaying the event. Obviously, if only a copy is kept,
any changes made to the event will only be local, but on the other hand, events should not be
delayed for too long, because it may be important, that the operator sees an event as soon as
possible. Furthermore, even copies of events should not be kept too long, because this might use
up all available memory.

The decision, how long to cache an event, and whether to keep a copy or the original, is
thus an important one, and should be made with care. Events can be kept in the cache for
two reasons, either because the event matches an event query (an event query is a selection of
a subset of the events in the cache; event queries will be explained in detail in Section 4.7.2.5)
in a rule, or because the event is associated with a context. In total, there are thus four ways to
keep an event:

� A copy of an event is kept because of a context: This happens, if the event is associated to
a context, which was created with the attribute delay associated set to false. The event
will be kept, until all relevant contexts were deleted, or until it is no longer associated to
any context.

� An event is delayed because of a context: This happens, if the event is associated to a
context, which was created with the attribute delay associated set to true. The event
will be kept, until all relevant contexts were deleted, or until it is no longer associated to
any context.

� A copy of an event is kept because of an event query: This happens, if there is any matching
event query with attribute delay set to false, and the event will be kept in cache, until
there is no more matching query.

� An event is delayed because of an event query: This happens, if there is any matching
event query with attribute delay set to true, and the event will be delayed, until there is
no more matching query.

The evaluation, which case or cases apply to a specific event, and how long each event has to
be cached, is the task of the correlation engine.

4.7 Rule Format

The rule format is a bit more complicated than the event format, since many possible conditions
and actions are necessary. For better understanding, it is suggested to keep the DTD and the

4.7. RULE FORMAT 69

examples given in Section B.3 at hand, while reading this section. The examples also show, how
a specific element can be used, and for what kind of event patterns each element is needed.

4.7.1 Rule Groups

The rule repository may be stored in a file or a data base. For the moment, we will assume, that
we have a single XML file, which represents the repository. The root element of the corresponding
DTD has the name rules. This element contains zero or more groups of rules. Although the
rule groups were inspired by OSSEC, the meaning is a different one: groups provide private
namespaces for rules, contexts and thresholds. This allows the specification of rule groups without
having to worry, whether someone else working on the same rule repository might already have
used a specific name (except obviously for the group name, as well as for event names).

Groups are designated by the element group and have the following attributes:

name A mandatory, unique (across all groups) group name. This is a string without any formal
restriction (still, it is a good idea to use a naming scheme with short, consistent names).

order A mandatory, unique integer value (greater or equal to zero), which influences the order
of execution of the different groups. The group with the smallest order value is executed
first.

description An optional human readable description of the groups purpose.

As elements, each group contains one or more rules (element: rule), which are specified in
the Event Condition Action (ECA) style, extended with an alternative action, which is executed
if the conditions are not fulfilled. So far, we can visualize the rule repository as follows:

Rule repository

Rule group 1

Rule 1

Event Condition Action Alt. action

Rule 2

Event Condition Action Alt. action

Rule group 2

Rule 1 Rule 2 . . .

. . .

Next, let’s take a closer look at individual rules.

4.7.2 Format of Individual Rules

Just like a group, each rule has the mandatory attributes name and order and the optional
attribute description. The name needs to be unique only across all names in the group, and
the order attribute influences the rule execution order inside the group in the same way as the
group orders influence the execution of the groups (the group order takes precedence, i.e. all
rules of a group are executed, before the first rule of the group with the next higher order is
executed, independently of the rule orders). The description can be used to provide a human
readable explanation of the rule.

4.7. RULE FORMAT 70

A rule contains the following elements, which have to be specified in the same order as they
are explained here:

events A list of events, that can trigger the execution of the rule. The rule is executed when
any of the listed events occurs. This element will be explained in Section 4.7.2.1.

conditions An optional list of conditions. By default, the list evaluates to true only if all
conditions are fulfilled at the time, when the rule is executed (→ and combination). An
empty condition list evaluates to true. Detailed explanations follow in Section 4.7.2.2.

actions A list of actions, which are executed, if the conditions are fulfilled. Detailed explanations
follow in Section 4.7.2.3.

alternative actions An optional list of alternative actions, which are executed, if the conditions
are not fulfilled. Detailed explanations follow in Section 4.7.2.4.

All four elements have no attributes.

4.7.2.1 Format of the Events List

The event list specifies, which events can trigger the execution of the rule. The following elements
can be used to specify events:

when class A previously defined event class (which is a list of event names).

when event A single event name.

when any Any event can trigger the rule.

All three elements allow the use of an attribute type, which specifies, which event type
is able to trigger the rule. Multiple types can be listed, separated by a vertical bar (e.g.
aggregated|synthetic), or any can be used to indicate, that any event type is acceptable. The
default is raw|compressed.

Using a bar for type separation is a slight deviation from the usual XML style, but something
like

1 <events>
2 <when event type=”raw | compressed ”>SERVICE:UP</ event>
3 <when event type=” timeout ”>SERVICE:DOWN</ event>
4 </ events>

has much better readability than a syntax more in XML fashion, like
1 <events>
2 <when event>
3 <types>
4 <type>raw</ type>
5 <type>compressed</ type>
6 </ types>
7 <name>SERVICE:UP</name>
8 </ when event>
9 <when event>

10 <types>
11 <type>t imeout</ type>
12 </ types>
13 <name>SERVICE:DOWN</name>
14 </ when event>
15 </ events>

4.7. RULE FORMAT 71

4.7.2.2 Format of the Condition List

The optional condition list specifies zero or more conditions. Although by default, a Boolean
and combination of the listed conditions is used, other logical combinations are possible with the
following three elements, which can also be nested:

or Evaluates to true, if one or more of the contained conditions are true.

and Evaluates to true, if all of the contained conditions are true.

not Evaluates to true, if the contained condition is false.

The not element must contain exactly one child element, while or and and may contain one or
more child elements. None of the three elements allow for any attributes.

The following elements are available for the condition:

context This element evaluates to true, if a context with the given name (specified as content of
the element) exists. By default, contexts from the own group are accessed, but the group
attribute allows to specify a different group. Additionally, the attribute counter allows
a condition on the value of the context’s counter. By default, the actual value must be
greater or equal to the given value, but the comparison operator can be changed with the
attribute counter op, which can have one of the three values ge (greater than or equal),
eq equal or le (less than or equal).

The content of the context element, which specifies the name of the context, can be
intermixed with a special element, trigger, which allows to use a field from the trigger
event as part of the string. The trigger element is empty, and contains only one mandatory
attribute, field, which specifies the name of the field (an attribute can be specified with
the dot notation, e.g. attributes.username). The trigger element can be used, whenever
a name of a context is expected.

trigger match Allows to specify a condition on the trigger. The element can contain any of the
following child elements, which specify conditions on different event fields: event class,
event name, event type, event status, event host, event attribute, event min age.
These elements can also be used in event queries, and will be explained in the corresponding
section. The element evaluates to true only if all given conditions are satisfied.

count Allows the specification of a condition on the number of events, which match the contained
event query (event queries will be explained is Section 4.7.2.5). The following attributes
are allowed:

� threshold – number of required events.

� op – an operator for the comparison, just like the attribute counter op for the context.

sequence This element verifies, whether the events matched by the queries given as child el-
ements appear in the event stream in the same order, as the queries are specified. The
following optional parameters are available:

� sort by – either creation or arrival, to decide whether to use creation or arrival time
as a reference; the default is to use creation time.

� match – any or all, to specify, whether it is sufficient, that any of the event from each
query follows the given sequence, or if all events have to follow the sequence.

4.7. RULE FORMAT 72

As an example, let’s assume, that we have specified queries for events A, B, and C, in that
order. Then,

� The event sequence A, B, C matches.

� The event sequence A, B, B, D C matches as well.

� The event sequence B, A, B, C matches with any, but not with all.

� The event sequence A, B does not match.

pattern The pattern element allows to verify, whether the given regular expression pattern
occurs in the event stream. It is important to realize, that this is not a regular expression
on the event names, but rather, the events themselves are used as symbols. Thus, it is
first necessary to specify an alphabet, with a symbol for each event subclass. This is done
with the first subelement of the pattern, the alphabet element. The alphabet element
in turn contains one or more symbol elements, which specify a symbol (i.e. a single letter)
in their attribute letter, and an event query for the corresponding event class as content.
The alphabet element can have one attribute, sort by, which specifies, whether to use
creation (default) or arrival time as a reference for sorting. The second subelement of the
pattern is called regexp, and simply contains the regular expression, which must match
the events. The element is evaluated by replacing each event in the event stream, which
matches a query, with the corresponding letter, and matching the resulting string against
the specified regular expression. The specified queries should ideally select disjoint subsets
of the event stream. Otherwise, an event, which matches multiple queries, is replaced by
the symbol of the first matching query only.

While the use of a pattern condition is a bit laborious, this element is also quite powerful.
As noted in Section 2.3.9, some patterns are suitable to be detected by FSMs. As it would
be rather cumbersome to specify an FSM for each pattern, the decision was made to allow
for regular expressions instead, which are equivalent in terms of the patterns they can
match,1 but simpler to specify (rather than an input alphabet, a set of states, an initial
state, a transition function and a set of accepting states, only an input alphabet and a
regular expression has to be specified) and better known among system administrators.

The pattern element could theoretically be used to replace the count and the sequence
conditions, but as these elements are usually easier to use, they are intentionally still
provided.

within This condition can be used to verify, whether the events from the contained queries
appeared within the specified time window. The element contains one or more event
queries, and has the following attributes:

� timeframe – the length of the time window.

� timeref – whether to use creation (default) or arrival time as reference.

� match – either any, or all (default). This attribute specifies, whether it is sufficient,
that there is a subset with at least one event from each query, which fits inside the
specified window, or whether all events from each query must fit inside the window.
In any case, the condition evaluates to false, if not all event queries contain at least
one event.

1As modern regular expression libraries (which are called regular only for historic reasons) allow for back-
references, look-around assertions and other extensions, practical implementations are actually often by far more
expressive than FSMs.

4.7. RULE FORMAT 73

condition plugin This element allows the execution of a plugin to verify external conditions.
The condition plugin element has one mandatory attribute name, which indicates the
plugin name, and contains zero or more plugin parameter elements (which specify a
parameter name as attribute (name), and the value as content), followed by zero or more
event query elements (which select input events for the plugin). The number and names
of parameters depends on the plugin; but the return value of a plugin is always either true
or false.

4.7.2.3 Format of the Actions List

The actions list specifies zero or more actions, which are executed, when the rule is triggered
and the conditions evaluate to true.

Besides actions, the actions list may contain two special elements. The first one is subblock.
This element allows the specification of a complete nested block with conditions, actions and
(optionally) alternative actions. The format of each part is the same one as in the rule itself,
and nesting of sub-blocks is allowed.

The second special element is select events. This element selects the events, to which
the following actions apply. The element contains a mandatory event query, which specifies
the events to select, followed by any number of actions. select events elements can not be
nested and no subblock is allowed, but otherwise, the same content as in the actions list is also
allowed inside a select events block. Outside of a select events block, the actions apply to
the trigger only.

The actual actions are the following ones:

drop Drop the selected events immediately and unconditionally (even if there are event queries,
which would lead to caching otherwise).

forward Forward the selected events immediately. If there are matching queries, a local copy
will still be kept, but the event will not be delayed.

compress Compress all events of the type raw or compressed into a single compressed event
with a count. If the query selects events with different names, a compressed event for each
name will be generated. If other fields conflict, the conflict resolves as follows:

� Different descriptions → empty

� Different hosts → name of the local host is used for the compressed events

� Different statuses → active

� Different creation times → oldest creation time

� Different values for a given attribute → attribute is omitted

� Different references → union of all references

� History → history is omitted

� Different values for local → false

� Different arrival times → oldest value

aggregate Creates a new event with references (of the type child) to all selected events. The
element contains a single element event, which describes the new event (this element will
be explained in Section 4.7.2.6).

modify Modify the status and/or local field of the selected events. The element is empty.
The following optional attributes exist:

4.7. RULE FORMAT 74

� status – can be used to change the status to active or inactive. The default is to
leave the current value.

� local – can be used to change the local field to true or false. The default is to leave
the current value.

� reason A reason for the change, which will end up in the event’s history.

modify attribute Modifies an attribute of the selected events. The element contains the value,
and the following attributes exist:

� name (required) – the name of the attribute to change.

� reason (optional) – a reason for the event history.

� op (optional) – an operator, either set (default), to set the new value, inc, the incre-
ment the attribute value by the given value, or dec to decrement it. If inc or dec is
selected, and the event’s value is not an integer, the attribute remains unchanged.

suppress Suppress the selected events (i.e. set the status to inactive and add the given references
as parent references). The element must contain one event query, which should select the
events responsible for the suppression. The optional attribute reason specifies a reason for
the history entry of the suppressed events.

associate with context Associate the selected events with the context, whose name is given
as element content. The element content may by intermixed with the trigger element.

add references Add references to the selected events. The mandatory contained event query
determines, which events are used as references, and the following attributes exist:

� type – whether the references are child, parent or cross (default) references (as ex-
plained in 4.3).

� reason (optional) – a reason for the event history.

create Create a new event. The element has no attributes and must contain a single event
element, which describes the new event (as explained in Section 4.7.2.6)

create context Create a new context. This element contains the following child elements:

� context name (mandatory) – the name the new context. This element has no at-
tributes and specifies the name as content. The content may be intermixed with the
trigger element.

� event (optional) – a description of the event, which will be generated upon a timeout.
If omitted, no event will be generated upon a timeout.

Additionally, the following attributes exist:

� timeout (mandatory) – the lifetime of the context. Zero can be used to specify an
infinity lifetime.

� counter (optional) – an initial value for the counter of the context. The default is
zero.

� repeat (optional) – whether to recreate the context after a timeout. The default is
false. If this attribute is set to true, and a timeout event is specified, the context can
be used to generate events in a regular interval.

4.7. RULE FORMAT 75

� delay associated (optional) – if set to false (default), only copies of the associated
events are kept in the cache. With true, the original events are delayed.

delete context Delete the context with the name given as element content. The element con-
tent can be intermixed with the trigger element.

modify context Modify the context with the name given as element content. The element
content can be intermixed with the trigger element. The following attributes describe
the modifications (the default is not to modify anything):

� reset timer – if true, the countdown for the contexts timeout is restarted.

� set counter – set a new value for the context’s counter.

� add counter – add the given value (a positive or negative integer) to the context’s
counter.

action plugin Execute the specified plugin with the selected events as input. The plugin may
also change the events (e.g. for enrichment with information from an external source).
This element contains a single, mandatory attribute name, which specifies the name of
the plugin, and contains zero or more plugin parameter elements as child elements. The
plugin parameter elements specify parameters for the plugin as key/value pairs (the key
is given in the attribute name, the value as content).

4.7.2.4 Format of the Alternative Actions List

The alternative actions list specifies zero or more actions, which will be executed, when the rule
is triggered and the conditions evaluate to false. Under any conditions, after the rule is triggered,
either the actions or the alternative actions will be executed, but never both or none of them.

The syntax and the possible action elements are exactly the same ones as in the actions list.
Contrary to the action list, the list with alternative actions is optional.

4.7.2.5 Event Queries

Event queries can be used to select a subset of events from the event stream, i.e. from all past
events. This is done with the event query element, which has the following attributes:

max age This attribute specifies, what the maximum age of the selected events should be. This
attribute is very important, as it is used by the correlation engine to derive a cache time
for a specific event (the cache time is the largest max age value from any possibly matching
query). If only events associated with a context, the trigger event, or events matching an
other query are selected, it is not necessary to specify a maximum age — but otherwise,
this is crucial, as it is not possible to keep events forever.

delay Specifies, whether to keep a copy, or delay the original event. If the goal is to modify an
event later, delay should be set to true. The default is false.

timeref Specifies, whether the maximum age is given relative to creation or arrival time. The
default is arrival.

name A name for the event query, which can be used to reference it from another event query
in the same rule group.

4.7. RULE FORMAT 76

The event query element may contain various elements, which select subsets from the event
stream. By default, the query returns the intersection of all subsets, but the following elements,
which may be nested, allow different set operations:

intersection Returns the intersection of all contained subsets.

union Returns the union of all contained subsets.

complement Returns the absolute complement of the contained subset (this element must
contain exactly one child element, but intersection or union can be used as child element
with more subelements).

For most purposes, it is easier to think of the event query as a boolean condition, which is
applied to every single event in the stream, and selects those, for which the condition evaluates
to true. From that point of view, the intersection could be seen as a Boolean and combination of
the contained conditions, the union as or combination, and the complement as Boolean negation.

There are however some elements, which select subsets from the contained sets, which can
be seen only as set operations. These are the following ones:

first of Selects the earliest event from the contained subset.

last of Selects the latest event from the contained subset.

unique by Selects a subset from the contained subset, for which each value for a given field is
unique (e.g. if the field is host, the new set contains only one event from each host). The
mandatory attribute field determines, which field to use, and the optional attribute keep
determines, whether to keep the first or last event for each unique value (the default is
first).

The elements first of and last of are useful e.g. with the within condition, e.g. to check,
whether the youngest events from various sets of events were all generated within a given window.
The element unique by on the other hand is useful mainly in combination with the count
condition, e.g. to check, whether at least x different hosts generated a specific event. For all
three elements, the attribute sort by, which defaults to creation, determines whether to use
creation or arrival time for sorting.

The actual elements, which select subsets from the event stream, rather than combining other
subsets (or, from the boolean point of view, specify conditions on a single event, rather than
building a logical combination of other conditions), are the following ones:

is trigger Selects only the event, which triggered the rule.

in context Selects all events, which are associated with the given context. The content of this
field can be intermixed with the trigger element, which was discussed above.

match query Selects all events, which match the query which the name given as element con-
tent. The names again have group scope here.

event class Selects all events with a name from the given event class.

event name Selects all events with the given name.

event type Selects all events with the given type.

event status Selects all events with the given status.

4.7. RULE FORMAT 77

event host Selects all events from the given host. The content can be intermixed with the
trigger element.

event attribute Selects all events with the given value of the specified attribute. The value is
specified as content (which can be intermixed with the trigger element), and the name of
the attribute is specified with the mandatory attribute name. Furthermore, the attribute
op allows the specification of a comparison operator, which can be eq for equals (which is
the default), ge or le (greater than or equal resp. less than or equal) or re for a regular
expressions. Obviously, ge and le require integers as both arguments; otherwise, they
evaluate to false. re requires a valid regular expression in the additional attribute regexp.

event min age Selects all events, which had at least the given age at arrival (i.e., the difference
between arrival and creation time must be at least that large).

The correlation engine must determine automatically, how long to keep a specific event, by
looking at all queries. For this reason, it is important to be careful when specifying queries, to
avoid an accidental caching of many events. For instance, one might want to know, whether
there were more than 1000 events in the last 7 days. To that end, it would be possible, to use a
count condition with an empty query and a maximum age of 7 days, as shown in the following
listing:

1 <c o n d i t i o n s>
2 <count th r e sho ld=”1000”>
3 <event query max age=”7d”>
4 </ event query>
5 </ count>
6 </ c o n d i t i o n s>

This would however mean, that all events from the last seven days would be kept in the cache
(even if there are more than 1000), and it would therefore be much better to use the counter of
a context, to count the events without caching them.

4.7.2.6 Event Specification

Some action elements create new events. Such events are always specified as event element.
This element has the following optional attributes:

� status – the status of the newly created event, either active (default) or inactive.

� local – whether to forward the event to the parent node after processing. The default is
true, i.e. the event will be kept local and not be forwarded.

� inject – where to inject the new event. The default is input, which means, the event is
placed in the input queue. The alternative is output.

The event element has the following subelements:

name Specifies the name of the new event as content.

description An optional description of the new event.

attribute An attribute for the event. The key is specified with the attribute name, and the
value is given as content. Any number of attributes can be used.

The content of the elements description and attribute may be intermixed with the trigger
element, which uses fields from the trigger event as part of the string (as explained earlier).

4.7. RULE FORMAT 78

4.7.3 Rule Scoping

If the rules are stored in a local file, they can simply be read directly. As stated earlier, it should
also be possible to read rules from a database. In that case, a rule group may apply to more
than one host.

An interesting idea — which was suggested by an Open Systems engineer — is to allow
scoping for event correlation rules. Currently, the configuration for hosts managed by Open
Systems is stored centrally in a database. There are configuration settings with a global scope,
company scope, service scope or a host scope, and a configuration setting with a more specific
scope always takes precedence over a more general setting. The same scheme can be used for
correlation rule groups.

Such a feature requires, that each node knows the precedence of the scopes, and the personal
value for each scope (country, company, etc.). In the database, each rule group requires two
additional attributes, specifying, on which scope the group applies, and for which values (e.g.
scope: country, values: Germany, France).

4.7.4 Formal Specification

A complete DTD for rules in XML, along with examples for rules, which could be used to process
the patterns identified in Section 2.3, is given in Appendix B.3.

Chapter 5

Implementation

This chapter discusses the implementation of the developed event correlation engine, which is
called ace (short for “a correlation engine”).

5.1 Preliminary Notes

5.1.1 Additional Documentation

5.1.1.1 Code Documentation

This chapter provides a high level description of the implementation. In most cases, this includes
a high-level (functional) overview, but no internal details. For a function and class documenta-
tion, please refer to the HTML documentation in the folder doc on the CD-ROM, that comes
with this thesis.

5.1.1.2 The Python Standard Library

Ace makes extensive use of modules from the Python standard library. A documentation of these
modules is available in [30].

5.1.1.3 Python Glossary

An explanation of terms specific to Python can be found in the Python glossary [29].

5.1.1.4 lxml Documentation

A documentation of the used XML library, lxml, can be found in [25].

5.1.2 Programming Language

For the selection of the programming language, the factor “time to prototype” was considered
more important than speed or memory efficiency. While traditional programming languages,
such as C/C++, usually meet the latter criteria, scripting or high-level programming languages
meet the former. From the wide variety of scripting- and high-level programming languages,
Python was selected because the developer has considerable expertise in it.

5.1. PRELIMINARY NOTES 80

5.1.3 Dependencies

Ace has the following dependencies:

� Python 2.6 – ace requires at least Python 2.6. Unfortunately, Python 3 is not backwards
compatible and can thus not be used [68] (the 2to3 tool bundled with Python 3 can however
be used to generate a patch for ace, which should make it work with Python 31). Since
Python 3 is currently not yet available in many distributions, ace is for the moment however
targeted primarily at Python 2.6.

� For XML parsing and generation, ace makes use of the lxml module (which in turn uses
libxml2).

� For daemon mode (optional), the packages python-daemon 2 and lockfile3 are required.

� For the IPython console (optional), IPython4 is required.

Under a recent version of Ubuntu, installing the necessary dependencies should be as simple as:

� $ sudo apt-get install python2.6 python-lxml

The optional dependencies can be installed with:

� $ sudo apt-get install ipython python-setuptools

� $ sudo easy install python-daemon lockfile

5.1.4 Privileges

Ace requires only normal user privileges in its default configuration. Root privileges are required
only if ace is configured to use a privileged server TCP port for a source or for the Remote
Procedure Call (RPC) server (as no privilege dropping is currently implemented, this is not
recommended).

5.1.5 Document Type Definitions

Ace requires that the DTDs for rules and events can be found in the location specified in the
configuration file. Furthermore, the DTD for rules is also required in the location, which is
specified in the document type string in the rules itself (usually rules.dtd in the same directory
as the rules themselves). Ace does not accept rules or input data, which is not valid against the
DTDs. On the CD-ROM, the DTDs can be found in the directory dtd.

5.1.6 Installation

Ace can be executed from any place. The only requirement is that the environment variable
PYTHONPATH contains the path, in which the package ace is placed (or alternatively that the
package is placed in the same directory as the main script).

1A caveat is however, that the 2to3 script only modifies files with a .py extension, so the script ace should be
renamed to something like ace-main.py first.

2Available at http://pypi.python.org/pypi/python-daemon/1.4.6.
3Available at http://pypi.python.org/pypi/lockfile.
4Available at http://ipython.scipy.org.

http://pypi.python.org/pypi/python-daemon/1.4.6
http://pypi.python.org/pypi/lockfile
http://ipython.scipy.org

5.2. TOP LEVEL PACKAGES 81

5.2 Top Level Packages

The directory code contains the following three Python packages:

� ace – the main package, which contains the correlation engine.

� ace-websink – a simple web event sink, which can be used to display events in a browser.

� ace-webui – a simple web UI, which can be used to display and modify the internal state
of the correlation engine (cache, contexts, etc.) in a browser.

As the latter two packages are irrelevant for the functionality of the correlation engine, and
contain comparatively few code, they will not be discussed.

Additionally to the packages mentioned above, the directory code contains one subdirectory,
util, which contains a small script, rewrite logs.py. This script can be used to scale and shift
the timestamps of events in a Comma Separated Values (CSV) event dump, as well as to sort
the entries (this is useful mainly for simulation). The script is pretty self-explanatory and will
not be explained any further either.

5.3 The Package ace

Input
queue

Output
queue(s)

 Source(s) &
Translator(s)

Condition
plugins Action

plugins

Local rule
repository

Event
cache

Output
eventsInput

events

Context
manager

Translator(s)
& Sink(s)

Ticker

RPC Server
Python
Terminal

Core

Signal
Handler

Information f low

Figure 5.1: Updated correlation engine node diagram from Figure 4.2.

The main package is called ace. ace contains several other packages and modules, which
can be connected to form a correlation engine. Figure 5.1 shows a high-level diagram of the
most important elements of a correlation engine node with three event sources and two event
sinks. The dashed lines indicate the individual threads of the correlation engine (elements outside
dashed lines belong to the master thread). Additionally to the elements in the previous diagram

5.3. THE PACKAGE ACE 82

(Figure 4.2), there is a ticker (the internal time source), and a context manager (which keeps
track of contexts). Furthermore, there is now a representation of the sinks (which generally also
implies an output translator for each sink). If there is more than one sink, each sink requires its
own output queue1, as the processing speed of the sinks is unpredictable (e.g., a sink that sends
events via a network connection may be stalled by a broken connection). Finally, on the lower
left of the diagram, the possibilities for user interaction and external control can be seen. There
is an optional RPC server (which is used by the WebUI), an optional Python console, and signal
handlers for various Interprocess Communication (IPC) signals.

In the following sections, the individual elements will be explained in more detail.

5.3.1 The Script ace

The script ace is the main script. Although some of the modules also provide main functions,
and can thus be executed directly, this is only for testing purposes, while ace is the usual entry
point for normal execution.

The tasks of the script are rather limited — it does command line argument parsing, instan-
tiates an object with configuration information and detaches from the terminal, if the daemon
mode was requested. After that, ace transfers the control to an instance of the Master class,
which is subsequently responsible for the instantiation of a correlation engine.

Please note that although the script ace is placed in the package ace, it is technically not
part of the package, but rather, it makes use of the package to instantiate a correlation engine.
The script ace can also be placed outside of the package (e.g. in some bin directory). In any
case, it is necessary that the environment variable PYTHONPATH is set to the directory, which
contains the package ace.

An overview of the available command line parameters and configuration options can be
found in Appendix C.

5.3.2 The util Package

The package util provides some modules with general purpose functions and classes, for tasks,
such as:

� Generating syslog messages (the module logging provides a wrapper class for the syslog
module from the Python standard library).

� Configuration file parsing (the module configuration provides a suitable class).

� Exceptions (the module exceptions provides several exception classes).

� Constants (constants are stored in the module constants).

� A help module with a class containing some help for the interactive mode.

As the provided functions and classes are fairly common, no further explanation of these
modules should be needed.

5.3.3 The tests Package

The package tests contains several modules with test classes, which provide unit tests for
functional verification. Each module can be executed individually, or all tests can be run at once
with the script run tests from the package ace.

1As the queues only store references, which point to the same events for each queue, the memory usage is not
significantly higher, if there is more than one output queue.

5.3. THE PACKAGE ACE 83

5.3.4 Master

The Master class (which can be found in the master module) is responsible for starting and
controlling the individual threads. The master directly instantiates the queues, the source and
sink threads, a ticker instance and a core thread, as well as a thread with an RPC server, if
configured to do so. The further behaviour then depends on the execution mode.

5.3.4.1 Normal Mode

In the default mode, the master starts all threads and goes to sleep, until a command arrives or
until a child dies (in which case, the master stops all threads and exits1). By default, the master
sleeps indefinitely.

5.3.4.2 Debugging Mode

The debugging mode can be requested with the -p or the -i command line switch, or by setting
either of the configuration variables python console or ipython console to true. The debugging
mode works just like the normal mode, except that rather than going to sleep, the master starts a
Python or IPython console, which can be used for debugging and interaction with the correlation
engine.

The console allows direct execution of code, and can thus be used to control or observe any
part of the correlation engine. Possible applications could be to inspect or change variables, to
start and stop threads, or even to redefine functions and classes during runtime.

When the user exits from the console, the master stops all threads and exits.

5.3.4.3 Simulation Mode

Simulation mode can be requested by setting the configuration variable simulation to true.
In simulation mode, the master only starts the threads for the sinks. The source and core
threads are not started, but rather, the master calls their work() functions individually and in
an ordered fashion. The master first calls the work() function of each source once, so the sources
can generate input. Secondly, the master sets the ticker to the time of the first event (it is thus
necessary, that the input events are already sorted). Finally, the master repeatedly calls the
work() function of the core, until all input is processed.

Calling the sources and the core one after another is necessary for simulation, to make the
results reproducible. If the threads would run asynchronously, the results could depend on the
scheduling of different sources (in normal mode, this is inevitable, as we can not prevent, that
e.g. one event arrives slightly earlier or later due to varying network latency).

Furthermore, synchronous operation is also faster for simulation, as it would otherwise be
necessary to make at least one context switch per thread and time step, to see whether a given
source has new input, respectively whether the core can process input or generate new output
(in normal mode, the overhead is unproblematic, as each time step lasts one second, and because
it is not even necessary to call each source at least once per step).

5.3.4.4 Control of the Correlation Engine via IPC Signals

In all three modes, the Master registers handlers for the following three IPC signals, which can
be used to control the correlation engine:

1An alternative would be to only generate a warning and restart the corresponding thread. Since the threads
are connected only via the queues, each thread is completely independent, and restarting a thread would require
no synchronisation or the like.

5.3. THE PACKAGE ACE 84

� SIGHUP – can be used to request a reload of the correlation rules.

� SIGTERM – can be used to request an ordered shutdown (i.e. the master asks each thread
to stop, and waits until all threads are finished).

� SIGINT – can be used to request an immediate shutdown (i.e. the master exits directly,
without asking the threads to stop).

5.3.5 The RPC Server

The RPC server, which can be started with the -R command line parameter, or with the
rpcserver configuration variable set to true, serves as an interface to an external controller.
The rpcserver is implemented in the RPCHandler class in the rpc module. It makes use of the
SimpleXMLRPCServer class from the Python standard library and provides the following three
functions, which can be called via RPC:

� getStats() – get some statistics from the correlation engine (returns a list of key/value
pairs).

� getContent(page) – get the content of the page with the given name for display in the
UI.

� execAction(action, arguments) – execute an action and return the results to the client.

Currently, the only client for the RPC server is the WebUI, which renders the content in HTML.
The server is however generic, and it should be possible to implement e.g. a GUI, without
changing the server. Independently of whether ace runs in simulation or normal mode, the RPC
server is always started as an individual thread.

5.3.6 Events

The module event contains the class Event. This class is used to represent single events, and
contains several helper functions to get, set or modify event details. Although using a class to
represent events has some memory overhead, the overhead is not excessive, as a class instance
only stores the attributes, but no individual copies of the class functions.1

Additionally, the event module also contains an EventGenerator class, which can be used
to generate random events for testing.

5.3.7 Queues

The queues store events until they can be processed, and provide an interface between the sources
and the core, respectively the core and the sinks. The different threads are independent from
each other (but not from the master thread, however), and they do not interact in any way, other
than by producing and consuming events.

For the queues, we use the class Queue from the Python standard library module Queue in
the package queue [31]. Conveniently, this module already provides a FIFO queue, which also
implements the necessary locking mechanisms for multiple concurrent producers and consumers.
The queues themselves are not threads; they are simple objects, shared between the threads.

While the Queue module is thoroughly documented in [31], it is noteworthy, that queues can
be joined. A join operation on the queue blocks until all items (i.e. all events, in our case) from

1Tests show, that an instance of an average event requires about 900 bytes.

5.3. THE PACKAGE ACE 85

that queue have been processed (signaling that an item has been processed is the responsibility
of the consumer thread; the mere fact that a queue is empty is not a sufficient condition for a
successful join). This mechanism is used by the master thread, to make sure that all events from
the queues have been processed before shutting down, if the configuration variable fast exit
is set to False (which is the default). To achieve this, the master simply executes a join on the
input queue, before stopping the core thread, and a join on each output queue, before stopping
the corresponding sink thread.

5.3.8 Ticker

For simulation, the correlation engine can not use the system clock as time source directly,
because of the following problems:

� In a simulation run with events collected throughout one month, having to wait a month
until the simulation is completed is not acceptable.

� Independently of how much physical time is used, the correlation engine must not advance
to the next simulation step, until all processing for the current step is done (actually,
this is preferable also in normal operation, as the results should not depend on how much
processing has to be done).

It is thus useful to have a degree of abstraction from the system time. In ace, this abstraction
is provided by the Ticker class in the module ticker. This class is quite simple — its main task
is to keep track of the current tick, which is stored in the internal variable tick. The Ticker class
never advances the tick itself, but rather, the core asks the ticker to advance the tick, as soon as
the core has processed all input events with an arrival time smaller or equal to the current tick.

The advance function of the ticker looks as follows:

1 def advance (s e l f) :
2 i f s e l f . c o n f i g . r e a l t ime :
3 while s e l f . t i c k >= i n t (time . time ()) :
4 time . s l e e p (s e l f . c o n f i g . t h r e a d s l e e p t i m e)
5 s e l f . t i c k += 1
6 s e l f . l o g g e r . logDebug (”Tick advanced to %d . ” % s e l f . t i c k)
7 return s e l f . t i c k

While this is really straightforward, there is one important property, which is noteworthy. If the
boolean variable realtime is set to True, the ticker waits, until the system time has reached
the next second, before advancing to the next tick itself. These three lines make the difference,
whether ace runs in real-time (and uses at least one second per tick, as it sleeps, if the processing
didn’t last that long), or whether it runs as fast as it can (and thus with maxed out CPU usage,
as it advances directly to the next tick, when all input events have been processed, or if there
were no input events).

With the two boolean variables simulation (discussed in Section 5.3.4.3) and realtime,
there are theoretically four possible combinations. In practice, the execution is however also
influenced by the input, i.e.,

� whether the input events already have timestamps (both for their creation and arrival
time),

� and whether the input events arrive continuously or are all known at the start.

This leads to different use cases for the four combinations of simulation and realtime.

5.3. THE PACKAGE ACE 86

� simulation false, realtime true – this is the normal execution mode; it makes most sense
with events, that arrive continuously. On the other hand, use of this mode with a-priori
known events is useful for a simulation, that is as close as possible to the normal execution
mode. This however requires, that the events already have timestamps, and that the
timestamps lie in the near future.1

� simulation true, realtime false – this is the normal simulation mode, which makes most
sense with events, which already have timestamps (and are sorted according to these times-
tamps). Continuously arriving events can not be used whenever simulation is set to true,
because input events are then only read at the start.2

� simulation true, realtime true – this configuration can be used to do a simulation in
realtime, which can be useful with events, which already have timestamps, but again only
if the timestamps lie in the near future.

� simulation false, realtime false – this configuration could be used to do a threaded
simulation in non-realtime. The results would not be reproducible, but closer to the normal
mode than with simulation true, realtime false, while the simulation would still run faster
than with simulation false, realtime true.

In most cases, the first two configurations are sufficient.

5.3.9 Sources and Sinks

Sources and sinks can be found in the packages ace.io.sources and ace.io.sinks respectively.
They are responsible for data input and output, but work independently of the data format. The
base class for sources and sinks can be found in the base modules in the corresponding package
directories. The base classes themselves are derived from Pythons Thread class. Currently, the
following sources are available (listed with their module name):

� file – reads data from a file or from standard input (if no filename is given).

� tcp – provides a socket server, which listens for input data on a TCP port.

� ticker – generates events at a regular interval (this source is available mainly for testing,
and is usually not needed otherwise; during normal operation a context with its attribute
repeat set to true would be a better way to regularly generate events). Please note, that
this source has no relation to the Ticker class explained in the previous section.

� null – a null source, which never generates an event (useful mainly for testing).

The available sinks are the following ones:

� file – writes data to a file or to standard output (if no filename is given).

� tcp – sends output data to the specified TCP port on the specified server.
1With timestamps in the past, all input events would simply be processed in the first processing step, whereas

with events in the future, the correlation engine does not process the first event, before the real time reaches
the time of the event. For events in CSV format, the script rewrite logs.py can be used, to shift and scale the
timestamps of events appropriately.

2The result of such a configuration would be that only the first batch of input events is read, e.g. until the
first End of File (EOF) is reached (file source) or the first TCP connection is closed (tcp source), and processing
would not start, before the first EOF is reached or the first TCP connection is closed.

5.3. THE PACKAGE ACE 87

� rpc – provides an RPC server, from which the output data can be read. This sink is
special in that it does not require an output translator, as it provides events directly as
dictionaries.

� null – a null sink, which discards all events it receives (useful primarily for testing).

A more detailed explanation of each source and sink, which also lists the available options, can
be found in the HTML documentation of the respective classes.

5.3.10 Translators

Translators are responsible for translating events from and to Python objects and various data
formats. Input and output translators can be found in the packages ace.translators.input and
ace.translators.output respectively. Again, the base classes can be found in the respective
base modules. Translators are simple objects, and each source and sink always instantiates ex-
actly one input and output translator, respectively. Any combination of source, input translator,
sink and output translator is possible. Currently, ace provides the following input translators:

� letter – translates each alphabetical letter in the input data stream to an event (this is
useful mainly for manual testing).

� linebased – translates input lines into events, according to translation rules as specified
in Section 4.5. This translator can be used e.g. to match log messages.

� xml – translates XML events, as specified in Section 4.3. This data format is useful primarily
for exchange of data with other applications.

� pickle – translates input in the ASCII format generated by the Python pickle module
into events. This format is both more compact and can be parsed significantly faster than
XML events, and is thus more suitable for transport of events between different correlation
engine nodes. The drawback is however, that this format is less universal, and thus not
suitable for data exchange with other applications. It should also be noted, that pickle is
not safe for use with untrusted data sources.

� csvdump – reads input data from a CSV database dump (suitable mainly for simulation).

� nop – does nothing. This translator is meant as placeholder for use with sources, that do
not require a translator (such as the null and the ticker sources).

The available output translators are the following ones:

� linebased – generates a short textual representation in one line for each event (note: this
translator is NOT a counterpart to the input translator with the same name).

� pickle – generates a stream of events represented in Python’s pickle format. This module
is the counterpart to the pickle input translator.

� xml – generates a stream of XML events. This module is the counterpart to the XML input
translator.

� nop – does nothing. This translator is meant as placeholder for use with the RPC sink.

Again, a more detailed explanation can be found in the HTML documentation.

5.3. THE PACKAGE ACE 88

5.3.11 Plugins

Two types of plugins exist, condition plugins and action plugins. Currently, the following condi-
tion plugins are provided:

� Weekday – allows a condition on the current week day.

� ScriptReturnValue – allows a condition on the return value of an executed script.

Action plugins:

� EventLogger – allows the logging of individual events.

� MailAction – allows the dispatching of mails with events.

� EnrichRegexp – allows the use of a regular expression to extract a part of an attribute into
a new attribute.

These plugins are provided mainly for demonstration purposes. They can be found in the pack-
ages plugins.condition and plugins.action, again with base classes in the respective base
modules.

5.3.12 Core

The core class is implemented in the module core and is called EventHandler. This class is
derived from Python’s Thread class, and it is responsible for creating instances of the EventCache,
ContextManager and RuleManager classes.

As most of the work is done in the instantiated classes, the main loop in the core (implemented
in its work() function) is rather simple:

1. If a rule reload has been requested by the user, ask the rule manager to do it.

2. Ask the context manager to update the contexts and possibly generate context timeout
events.

3. Ask the cache to clean up old events and possibly forward events, that were delayed.

4. While there are either input events generated internally or input events in the input queue
with a timestamp smaller or equal to the current tick, do the following:

i) Get the next input event from the events generated internally or from the input queue
(the former always have priority).

ii) Ask the rule manager to determine cache and delay time for this event (indicating,
how long the event needs to be kept in the cache, respectively delayed).

iii) Insert the event into the cache.

iv) Get all relevant rules from the rule manager, sorted according to group and rule order.

v) As long as the event is in the cache (and has not e.g. been dropped by a rule) and
active, execute one rule after the other.

vi) If the event was taken from the queue, signal to the queue, that the event has been
processed.

5. If a clearing of the cache has been requested by the user, ask the cache to do it.

5.3. THE PACKAGE ACE 89

6. If there are any events, which were modified, reevaluate their cache and delay time.

7. Ask the ticker to advance to the next tick.

This routine is either executed in an infinite loop, until the correlation engine is stopped (normal
mode), or it is called repeatedly by the master (simulation mode).

5.3.13 Cache

The cache, which is implemented in the EventCache class in the cache module, is responsible
for storing events. Each event has a delay time (which indicates, how long an event should be
delayed before being forwarded), and a cache time (which indicates, how long a copy of the event
must be kept in the cache, because a rule may need the event), which are both derived from the
rules by the rule manager. Furthermore, contexts can also extend the cache and delay times (as
discussed in Section 4.6.3).

The cache is based on three main data structures:

� events – a set with references to the events in the cache.

� delay list – a list of timestamps with forwarding times (i.e. the time, when the delay is
over) of events, and references to the corresponding events.

� cache list – a list of timestamps, with cache removal times of events, and references to
the corresponding events.

When a new event arrives (and already contains cache and delay time, which were determined
by the rule manager), the cache adds the new event into the cache and inserts timestamps for
the times, when the cache and delay times are over, into the corresponding lists. As the two lists
are always kept in a sorted state, the events must be inserted in the right place, which is done
with the help of Pythons bisect module.

When an event was changed, the old timestamps are removed from the lists, and new ones
are inserted.

Whenever the core asks the cache to clean out old events, the cache simply needs to check
the events at the start of the cache and delay lists, which have a timestamp smaller than the
current tick, and forward, respectively remove them from the cache if necessary.

Besides keeping track of events, the cache also contains some functions for minor tasks, such
as compressing events.

5.3.14 Context Manager

As the name implies, the context manager keeps track of all active contexts. It is implemented
in the ContextManager class in the module contexts and makes use of the Context class (which
represents a single context) in the same module.

To keep track of timeouts, the context manager uses a sorted list with timestamps of possible
context timeouts (the variable context timeouts), just as the cache keeps a list with timestamps
of cache and delay times. The contexts themselves are stored in the variable contexts, which is
a nested dictionary, with the group name as key on the first level, and the context name as key
on the second level.

5.3. THE PACKAGE ACE 90

5.3.15 Rule Manager

The rule manager is responsible for managing correlation rules. It is implemented in the
RuleManager class in the rulebase module, and makes use of the classes RuleParser (which is
responsible for parsing XML rules), RuleGroup (which represents a single rule group) and Rule
(which represents a single correlation rule) in the same module.

The rule parser creates the rules by making use of the rule elements from the module rule-
components in the package basisfunctions. For each XML rule element, there is a corre-
sponding function with the same name as the element1 in rulecomponents. This function can
be

� directly the function, which represents the element (this is the most simple case, but only
possible, if the represented element does not have any attributes or child elements),

� a function, which returns a new function, which is a closure over the element attributes
representing the rule element (if the rule has attributes, but no children),

� or a function, which returns a new function, which is a function generated from one or
more other functions (if the element contains child elements).

An example for the first case is the drop element, which is represented by the following
function:

1 def drop (** kwargs) :
2 kwargs [’ cache ’] . dropEvents (kwargs [’ s e l e c t e d e v e n t s ’])

As the actual work is done in the cache, this function is as simple as calling the appropriate
function in the cache with the events passed in the argument selected events (the function
does still accept any argument, so the caller does not have to discern, which action element it is
calling).

An example for a function, which returns a closure over the arguments, is the modify element,
which can be used to modify the status and local fields of events:

1 def modify (s tatus , l o c a l , ru l e , reason) :
2 def modi fy generated (** kwargs) :
3 events = kwargs [’ s e l e c t e d e v e n t s ’]
4 core = kwargs [’ core ’]
5 t i c k = core . t i c k e r . getTick ()
6 hostname = core . c o n f i g . hostname
7 kwargs [’ cache ’] . removeStaleEventsFromList (events)
8 for event in events :
9 f i e l d s = []

10 i f s t a t u s != None and s t a t u s != event . ge tSta tus () :
11 event . s e tS t a t u s (s t a t u s)
12 f i e l d s . append (’ s t a t u s ’)
13 i f l o c a l != None and l o c a l != event . ge tLoca l () :
14 event . s e tLoca l (l o c a l)
15 f i e l d s . append (’ l o c a l ’)
16 i f l en (f i e l d s) > 0 :
17 event . addHistoryEntry (ru le , hostname , t i ck , f i e l d s , reason)
18 core . addModif iedEvents (events)
19 return modi fy generated

This function basically updates the status and local fields of selected events, adds an appro-
priate history entry and notifies the core about the modified events (whose cache and delay times
must be reevaluated at the end of the current processing round).

1Except where the name is a reserved keyword in Python, in which case an underscore is added.

5.3. THE PACKAGE ACE 91

An example for a function generating a new function (which is also a closure) from an existing
function (in this case the query function) is the function for the count element, which checks, if
the passed query selects at least, exactly or at most the given number of events (depending on
the attribute op):

1 def count (thresho ld , op , query) :
2 i f op == ”eq” :
3 return lambda **kwargs : l en (query (** kwargs)) == thre sho ld
4 e l i f op == ” l e ” :
5 return lambda **kwargs : l en (query (** kwargs)) <= thre sho ld
6 e l i f op == ”ge” :
7 return lambda **kwargs : l en (query (** kwargs)) >= thre sho ld

The code is in this case pretty self explanatory. It is noteworthy though, that the query function
is evaluated, when the rule is executed (and may of course return different events each time),
and not at build time (since the arguments to the function are not known at build time).

An equally short, but more complicated example is the function for the element and:

1 def and (c o n d i t i o n s) :
2 i f l en (c o n d i t i o n s) == 0 :
3 return t rue # t h i s i s a func t i on re turn ing True , not a boolean va lue !
4 else :
5 return reduce (lambda a , b : lambda **kwargs : a (** kwargs) and b(** kwargs) ,
6 c o n d i t i o n s)

If there are no child elements, the function returns a function, which returns true (because the
element was defined to evaluate to true, if there are no child elements). If there are children, the
children are reduced with a function (the outer lambda), which takes two functions as arguments
and returns a new function (the inner lambda), which evaluates to true, if the two functions
passed as arguments both evaluate to true.

While the use of functional programming and closures can lead to slight headaches, it also
allows us to build actual rule functions when the correlation engine is started, rather than having
to use eval() or exec() during runtime, as many of the existing correlation engines do (the main
problem with eval() in a correlation engine is its slowness, due to having to parse the expression
string, each time a function is evaluated; furthermore, eval() has also been criticized for being
insecure [71], and it can be harder to read and debug than other solutions).

Besides building the rules, the rule parser also extracts some additional information from the
rules, such as the set of event and class names. Furthermore, the rule parser also generates a
hash from a recreated XML representation of each rule group (the advantage of recreating the
XML is that the comments and whitespace can be stripped, and the hash does not change, if
only a comment or indenting was changed). With this hash, the rule parser can decide, which
rule groups were unchanged, when the user requests a reload of the correlation rules. Not having
to recreate unchanged rules is not only more efficient, but also has the advantage, that contexts
of an unchanged rule group do not have to be deleted, when reloading the rules.

After the rule parser has parsed the rules, the rule manager builds a lookup table of the
relevant rules for any given event name and type. When the core asks the rule manager for the
relevant rules for a specific event, this table is used together with a list of rules relevant for all
events, to determine the response.

5.3.15.1 Event Queries

The event queries, which are responsible for selecting events from the cache, can be built in the
same way as the rest of the rules, by combining components from rulecomponents, as explained
above. While building the queries, some sanity checks are also done, e.g. for the match query

5.3. THE PACKAGE ACE 92

element, which can be used to select events, which match another query. For this element, we
need to check, that the matched query exists, and that there are no “match query-loops” (this
check is implemented in the recursive function detectQueryLoops in the RuleParser).

The rule manager however also has the task to determine cache and delay times for events
from the queries, which requires some additional work.

To determine the cache and delay time, we have to decide, which queries match a given event.
Thus, for each query, we need an additional function, which can determine, whether that specific
query matches a specific event. A simpler approach would be to simply extract all relevant
event names and other needed information from the XML representation of the query with an
XML Path (XPath) expression, but such an approach could only work in the most basic cases,
as a condition might also be inverted (“all events not originating from host X”), or combined
with other conditions. By building a function for each query according to the Boolean query
interpretation from Section 4.7.2.5 (i.e. interpreting the elements either as a Boolean condition
on a single event, or as a combination of several conditions, such as the interpretation of the
intersection element as and -combination of the contained conditions), we can use the Boolean
evaluation built into the underlying interpreter, to evaluate the queries.

As explained earlier, not all elements can be evaluated for a single event. For instance, the
elements first of and last of have a meaning only in context of a set of events, and in this
case, we need to cache or delay all events, which could possibly be the first or last of the selected
set (i.e. all events in the set). For other elements, it may not be possible to decide, whether the
event matches a query when the event arrives, e.g. because the query requires information from
an event arriving later (this is the case specifically whenever the trigger element is used). For
these cases, we have to introduce a third state, undefined, which is treated according to the truth
tables shown in Table 5.1. The tables also introduce a fourth state, defined, which represents the
case, where we assume that we can determine the boolean value, but it is currently not known
(this state is identical to undefined, except that a combination of defined and undefined always
evaluates to undefined). This fourth state is however only relevant for building query tables,
which will be explained later.

With these tables and the elements in the module querycomponents, we can build query
determinator functions, which can be evaluated for a given event to either true (the query
applies to the tested event), false (the query does not apply to the event) or undefined (we can’t
decide, whether the query applies to the tested event).

Once all of these functions are built (which has to be done, whenever new rules are loaded),
each new event can simply be tested against all queries, to decide how long to delay and cache
that specific event — the delay (cache) time is the maximum max age of all queries with delay
set to true (false).

While there is no reason against this simple “brute-force solution” from a functional perspec-
tive, this solution would obviously result in bad scalability, as each new event would have to be
tested against all queries, whenever a new event arrives.

5.3.15.2 Query Tables

An alternative solution is to build query tables, which can be used to look up the relevant queries
for a given event, similar to how the rule table can be used to look up the relevant rules.

For instance, we could build a table for all combinations of event name, state and type, to
look up the corresponding queries. Obviously, there are quite many combinations, and building
the query tables instead of trying each query for each event is thus a time-memory trade-off.
In the current implementation, the query tables are built for each event name only, without
discerning between different types or states. As most queries are likely to apply only to specific

5.3. THE PACKAGE ACE 93

x y x ∧ y
0 0 0
0 1 0
0 u 0
1 0 0
1 1 1
1 u u
u 0 0
u 1 u
u u u
0 d 0
1 d d
u d u
d 0 0
d 1 d
d u u
d d d

x y x ∨ y
0 0 0
0 1 1
0 u u
1 0 1
1 1 1
1 u 1
u 0 u
u 1 1
u u u
0 d d
1 d 1
u d u
d 0 d
d 1 1
d u u
d d d

x ¬x
0 1
1 0
u u
d d

Table 5.1: Truth tables for the Boolean operations and, or and not with input values true, false,
undefined or defined.

event names (which can also be seen in the queries shown in Appendix B.3.2), and because there
are quite many event names, this provides a good trade-off.

To build the tables, we need the possibility to check, whether a given query matches an event
with a given values for some fields, but undefined values for other fields (e.g.“does this query
apply to events with name ISP:OUTAGE and any event type, host name, etc.?”). This functionality
is provided by the predet wrapper function in the querycomponents module, which allows to
preset values for some of the components. The tables are currently built roughly as follows (the
corresponding code can be found in the function buildQuerytable in the RuleManager class):

� The query is first tested with all components depending on event data set to undefined.
If this test evaluates to false, we know that no event needs to be held back due to this
query (as the query would always evaluate to false), and this query can be ignored (this is
the case e.g. for a query, which only selects the event, which triggered the rule, using the
is trigger element).

In this case, it is also allowed to omit the max age attribute of the event query in the rule,
as the maximum age of the events is already limited (if the max age attribute is omitted
and the query does not evaluate to false, ace complains, that the maximum age can not be
inferred from the query).

� If the above test evaluates to true, all events have to be delayed or cached (depending on
the attribute delay of the query element) due to this query (at least as long as specified by
the by the max age attribute of the query), as this query evaluates to true for any event.
This is the case e.g. for an empty query (no conditions).

Since such queries always evaluate to true, there is no need to store each individual query
in the table, but rather, we simply need to know the maximum delay and cache time of all
queries, which always evaluate to true. This value is the minimum delay, resp. cache time
for any event.

5.3. THE PACKAGE ACE 94

� If the above test evaluates to undefined, another test is done, with all components depending
on event data set to defined.

� If this second test still evaluates to undefined, we know that even with event data
known, the query can’t be evaluated. In that case, we also have to cache or delay all
events at least as long as specified by this query, and there is no reason to store the
query, but rather, we just remember the global maximum value for delay and cache
time.

� Otherwise, the outcome can be determined with event data available. In that case,
a third test is made, with all components depending on event data set to undefined,
except components depending on the event name (i.e. the elements event class and
event name), which are set to false.

* If this third test evaluates to false, we know that the query is not matching every
event with any name, and it makes sense to store the query only at the correct
positions in the table (i.e. under all event names, for which this query is relevant).
In that case, the query is tested against each event name, resp. all event names,
which appeared either directly or indirectly (via a class name) in a query. If this
individual test evaluates to true, only the cache or delay time has to be stored in
the table; if it evaluates to undefined, the query itself is stored, so that it can be
evaluated when an event actually arrives. The query is however stored only if it
would delay or cache the event longer than the local (i.e. per event name) and
global minimum value.

* Otherwise (i.e., if the third test, returned true or undefined), the query is stored
in the global table, rather than storing it at each position in the table. Again,
this is done only if the default value for cache or delay time is not larger than this
querys value.

The function updateCacheAndDelayTime in the RuleManager is used to actually determine
the cache and delay time for a given event. This is done by first determining the relevant queries
for a given event. These are then sorted according to the cache or delay time they would require,
if the event matches, and consequently evaluated one after the other. Because of the sorting, the
queries only have to be evaluated until the first match is found.

Since the whole process is rather complicated, the brute-force solution has also been imple-
mented, and can be used in debug mode, to verify that it results in the same cache and delay
time as when using the query tables.

Chapter 6

Evaluation and Refinements

This chapter discusses the evaluation of ace, as well as some refinements.

6.1 Functional Verification

6.1.1 Unit Tests

As already mentioned in Section 5.3.3, the directory ace/tests contains several unit tests. At the
moment, this directory contains 13 classes with 65 tests for core components, plugins, translators
and I/O classes.

As these tests are implemented for functional verification only, they will not be discussed any
further.

6.1.2 Event Balance

To provide some kind of a self check, the core keeps track of the number of events read from the
input queues generated, dropped, compressed or written to the output queues.

A balance of these numbers can be requested from the core via the core’s function getEvent-
Balance(). The returned number should be (and indeed is) usually zero (it may however be
temporarily off by one, when the function is called while the core is processing an event), and
can be used as a sanity check.

6.2 Profiling

As the Python standard library provides some aid for profiling through the modules cProfile
and pstats, profiling is directly built into ace. Profiling can be enabled from the command line
with the -P switch.

As profiling was implemented at an early stage during the implementation phase, it already
led to some improvements during development, such as:

� Originally, the event cache used Pythons list data type to internally store events. As
the list stores individual elements according to indexes, the membership test has a time
complexity, which is linear to the number of elements in the list (as each element has to
be tested individually). The data type was thus changed to Pythons built-in set type,

6.3. EVALUATION WITH RANDOM EVENTS 96

which stores elements according to their hashes, and whose membership test is orders of
magnitude faster than the membership test of a list.

� Tests also showed, that the function for the logging of debug messages (which is done only
at the highest log level, as debug messages are very verbose) used up a significant amount
of the CPU time, even with debugging turned of. Further investigation revealed that this
was because all elements of the format string were converted, even if the resulting string
was not printed. While this behaviour is not surprising, and usually no problem, some
of the conversions can be quite slow.1 A slight change in the logDebug() function, to
build strings only if they are going to be printed (or logged to syslog), led to a significant
improvement here.

� At an early stage, the event cache was generally too slow. This led to a new implementation
with timestamps in permanently sorted lists (as discussed in Section 5.3.13).

With these improvements, the profile of an average simulation now shows, that the main
time is spent in the work() function of the core, the updateCache() function of the cache, and
the updateContexts() function of the context manager. A rather large amount of the time
is also spent in the function generateOutputEvent() of the core, as this function makes an
in-memory copy of each event, before putting it into the output queue (as an event may still be
kept in the cache, after it has been put into the output queue, and the specification also allows
the modification of such events in the cache, making a copy is necessary to avoid the accidental
modification of an event in the output queue, by making a modification to the same event in the
cache).

In real-time runs, the profile shows, that ace spends most of its time sleeping.

6.3 Evaluation with Random Events

To evaluate the time and memory complexity of the correlation engine, several tests with ran-
dom events were done. The scripts used throughout this Section can be found in the directory
evaluation.

6.3.1 Rule Execution Time

The script plot rules runtime.py was used to evaluate the impact of the number of rules on
the processing time used for an individual event. The script generates between 0 and 1000 rule
groups, each with one rule, which is triggered by all events. The script then lets the correlation
engine process 100 random events for each step.

As shown in Figure 6.1, the processing time required for an individual event is linear to the
number of rules. While the time needed to process a single event with 1000 rules in the repository
is, with 0.1 second, quite high, it should be noted that such a situation is unlikely to arise in a
practical setting, as each rule should normally only apply to a small fraction of the events, and
even with hundreds of rules in the repository, only a few rules should apply to a specific event.
Furthermore, as long as compression and filtering is done early, events arriving at a high rate
should usually only trigger these rules.

1This is especially true for the conversion of a whole event into a string. Each time an event needs to be
converted to a string (e.g. because it appears in a format string), Python calls the str () function of the Event

class, which then generates a string representing the event.

6.3. EVALUATION WITH RANDOM EVENTS 97

Figure 6.1: Event processing times with various numbers of relevant rules.

6.3.2 Evaluation of the Cache

The insertion of a new event into the cache consists of adding the event to the events set of the
cache, and the insertion of appropriate timestamps and references into the delay and cache lists
(cf. Section 5.3.13). As the addition of an event to a set can be done very fast (only a hash and
a reference have to be added), the insertion of timestamps into the delay and cache lists is likely
the determining factor for the total insertion time. As the lists are permanently kept in a sorted
state, the corresponding function can use a binary divide-and-conquer algorithm, rather than
searching through the whole list. From intuition, we would thus expect that the whole operation
has a complexity of O(log2 n), with n being the number of events in the cache.

The plot in Figure 6.2 (generated by the script plot cache speed.py shows the insertion time
for a single event (the test inserts 1000 events and averages the result) into a cache containing
between 0 and 100’000 events. This plot contradicts the expectation, as the insertion time grows
linearly with the number of events in the cache.

Profiling however confirms, that an overwhelming amount of the time is indeed spent in the
insort right function (which is responsible for inserting the timestamp into the cache and delay
lists) from Pythons bisect module.

A look at the code of this function further reveals, that a binary divide-and-conquer algorithm
is indeed used in this function:

1 def i n s o r t r i g h t (a , x , l o =0, h i=None) :
2 i f l o < 0 :
3 raise ValueError (’ l o must be non−negat ive ’)
4 i f hi i s None :
5 hi = len (a)

6.3. EVALUATION WITH RANDOM EVENTS 98

Figure 6.2: Event insertion times into a cache containing between 0 and 100’000 events.

6 while l o < hi :
7 mid = (l o+hi)//2
8 i f x < a [mid] : h i = mid
9 else : l o = mid+1

10 a . i n s e r t (lo , x)

The answer lies in the list insert operation in the last line of this listing: since the list data
structure is array-based, all references behind the index, where the new element is inserted, have
to be moved, and the insertion operation thus has O(n) complexity.

The solution to get better than linear insertion time is thus to use a data type with better
insertion complexity, such as a tree structure. The blist [60] provides a replacement for the
built-in list data type, based on bushy trees. The blist provides O(log2 n) insert and delete
operations at the cost of slower get and append methods and a larger memory requirement (a
more comprehensive comparison is provided in [60]). Since the cache uses mostly insert and
pop operations, this is a favorable trade-off. The cache was thus changed to use the blist type
(since blist is not in the Python standard library, the usual list type is still used as a fall
back).

With these changes, the insertion complexity now looks much better, as shown in Figure
6.3. The plot also shows minor page faults (which indicate, that the OS needs to allocate more
memory, which was earlier reserved for Python), as an explanation for the occasional spikes in
the insertion time.

When removing events from the cache (which consists of removing the event from the events
set and removing the cache and delay timestamps from the corresponding lists), a similar picture
can be seen, as show in Figure 6.4.

As a last test, the memory consumption of the cache was evaluated. As expected, the mem-
ory usage grows linearly with the number of events in the cache, and is slightly larger than the
size of the events itself (as the cache needs to save the cache and delay timestamps addition-

6.3. EVALUATION WITH RANDOM EVENTS 99

Figure 6.3: New (faster) insertion times for a cache using the blist data type.

ally to the events themselves). Figure 6.5 shows the results of an evaluation with the script
plot cache mem.py.

6.3. EVALUATION WITH RANDOM EVENTS 100

Figure 6.4: Per event time to drop an event from the cache.

Figure 6.5: Memory usage of a cache containing between 0 and 100’000 events.

6.4. EVALUATION WITH REAL-WORLD EVENTS 101

6.4 Evaluation with Real-world Events

More interesting than the evaluation with random events and dummy rules is of course the
evaluation with real events and meaningful rules. The correlation engine was thus tested with
replayed real log messages from two different months.

As each pattern requires corresponding correlation rules to detect the pattern, it would not be
possible in due time, to write correlation rules for all patterns. For this reason, a set of frequent
patterns was tested only. This section presents some of the results.

The rules used throughout this Section can be found in the directory evaluation-rules on
the CD-ROM.

6.4.1 Compression

One of the first correlation steps is filtering and compression. For compression, the compress
rule element can be used. As more than one event is needed for compression, events need to be
delayed for some time to allow compression.

In a test run, a compression of the 5 most frequent events with a time window of 2 minutes
led to a reduction of the number of events of about 50%.

In practice, the information loss inherent in compression may not always be acceptable. In
this case, aggregation can be done in the same way as compression, using the element aggregate
instead of compress.

6.4.2 Changing Bursts to Start/End Signaling

As explained in Section 2.3.2, it is sometimes useful to generate only one event when a burst
starts and one when a burst ends, rather than forwarding all events of the burst. This can be
achieved as follows (assuming we want to change the signaling of events A):

1. When the first event A from a specific host arrives:

� Create a context (specific to that host).

� Create an A:FIRST event.

2. As long as the context exists, drop further A events from the same host.

3. When the context times out, create an A:LAST event.

In a practical test (applied to WINBIND:CONF:ADCONN events), this approach worked without
problems. It can however only be applied, when the information contained in the individual
events is of no interest, as the events are (intentionally) lost.

6.4.3 Aggregation of Old Events

As discussed in Section 2.3.3, another application is the aggregation of old (outdated) events.
This can be achieved with the event min age rule element, which allows the specification of
a condition on an events age at arrival (the element compares the events creation and arrival
timestamps).

In a test run, a rule, which created a context, when the first event older than a day arrived, and
aggregated all old events after the context timeout 10 minutes later, worked without problems.

6.4. EVALUATION WITH REAL-WORLD EVENTS 102

6.4.4 Irrelevant Unique Events

Sometimes, it is desirable to drop a given event, if it arrives only once (cf. Section 2.3.5). This
can again be achieved with a context, which is created, when the first event arrives. When
an event arrives, and no context exists yet, the event can be dropped, otherwise, the event is
forwarded.

While this approach worked in tests, it was of limited use, as the cases, where only exactly
one event of the targeted kind was created, were rare. Furthermore, the rule is also possibly
dangerous – if events are generated at an interval, which is slightly larger than the contexts
timeout, all events are dropped. It might thus make sense to use a second context to count the
dropped events over a larger time period.

6.4.5 Flickering Detection

As discussed in Section 2.3.6, a short flickering of a service or an other component can sometimes
be seen. An example is the pair NIC:ETHERNET:LINKDOWN and NIC:ETHERNET:LINKUP. Several
such events from different hosts and interfaces are often generated in short succession, and
it is thus helpful, if matching pairs (down and up event from the same host concerning the
same interface) can be collected (rather than having to look for the corresponding up event for
numerous down events manually). This can be done in a two-step process:

1. If a NIC:ETHERNET:LINKDOWN or a NIC:ETHERNET:LINKUP event arrives, enrich it with the
information about the corresponding interface, extracted from the log message with a
regular expression (using the EnrichRegexp plugin).

2. If a NIC:ETHERNET:LINKUP event arrived, check whether there was a (not yet correlated)
down event from the same host, concerning the same interface during the last 10 seconds,
and aggregate or suppress the two events (all NIC:ETHERNET:LINKDOWN events are delayed
for up to 10 seconds, to allow suppression).

In a test with real-live events, this correlation behaviour worked without any problems.
As there is sometimes a distance of more than 10 seconds between the two events, a third

rule was however added, to detect pairs within a window of up to 10 minutes. As it is not
desirable to delay events that long, this rule did not suppress the original events, but rather just
created a new event with references to the two events in the pair. In that case, it is the task
of the front-end to update the presentation of the events, as soon as the new event arrives (this
behaviour is implemented in the demonstration event sink web front-end).

6.4.6 Suppression of Dependent Events

In Section 2.3.7, we discussed the requirement to suppress dependent events, to help the operator
find the root-cause of a problem. This was tested on two practical examples.

6.4.6.1 IP theft events

IP theft events indicate, that there is another host, which is using the same IP address as the
host sending the event. While this would usually constitute a serious problem, which needs
investigation, it is an expected problem in some cases. An example is the case, where the slave
in a hot standby firewall configuration becomes master, while the master is still active (e.g.
because the master is unresponsive due to high load). In this case, both firewalls try to use the
same IP address, resulting in IP theft events. As an event for the duplicate hot standby master is

6.4. EVALUATION WITH REAL-WORLD EVENTS 103

generated as well, the IP theft events are of no interest (solving the root-problem, i.e. removing
the duplicate master, will also solve the IP theft problem).

Ideally, this problem could be treated by simply creating a context when the event indicating
the duplicate master arrives, and suppressing IP theft events, as long as the context exists. As
an event also arrives, when there is no more duplicate master, the context can be removed upon
this event. Unfortunately, the IP theft is often detected before the duplicate master, and the
corresponding events arrive first. This means, that another rule is needed, to suppress the IP
theft events from e.g. the last minute, when the duplicate master event arrives (the IP theft
events thus have to be delayed for one minute, as we do not know at the time of their arrival,
whether a duplicate master event will arrive in the future).

With this extension, the suppression of the IP theft events works well. This example however
shows, that the creation of correlation rules is often an incremental task, which does not succeed
at the first try. On the other hand, if a correlation rule group does not match all targeted event
patterns, there is usually a way to extend the rules, to detect all patterns.

6.4.6.2 Reboots

Since reboots routinely cause certain events, a suppression of these events in the context of
a reboot is desirable. An example is the suppression of NIC:ETHERNET:LINKDOWN and NIC:-
ETHERNET:LINKUP events. This can be done in a two-step process:

1. Collect NIC:ETHERNET:LINKDOWN and NIC:ETHERNET:LINKUP pairs, as described above
(Section 6.4.5).

2. Suppress these aggregated events, if there was a reboot event in the last minute.

In a practical test, this approach worked without problems.

6.4.7 Complex Patterns

As an example for a more complex pattern, the detection of a successful Virtual Router Re-
dundancy Protocol (VRRP) transition and the corresponding return to normal was tested. The
transition usually consists of the three events for the first transition and another three events for
the transition back to normal. While a first test with a simple regular expression on these events
worked in some cases, it could not detect the pattern in other cases, because the events within
both groups are not always created in the same order.

While it is possible to simply specify all six permutations for each group in the regular
expression, this leads to quite a long expression. Luckily, the used regular expressions also allow
look-ahead assertions, which can be used to specify a pattern without having to mention each
permutation individually. With this update, it was possible to detect complete VRRP transitions
(including the transition back to normal) independently of the event order inside the two groups.

As a VRRP transition usually includes further aspects (such as e.g. an ISP outage, which
caused the transition in the first place), the rules would however likely have to be extended for
practical use.

6.4.8 Speed Considerations

Processing all events from a whole month (about 40’000 to 60’000 events) with the example
rules usually took the correlation engine less than 10 minutes. While a practical setting would
likely require many more rules than were used in these test runs, the used rules were usually
able to reduce the number of events considerably. For this reason, it can be safely assumed that

6.4. EVALUATION WITH REAL-WORLD EVENTS 104

real-time operation in a practical setting would be possible, especially as the tests were mostly
done using a single node only.

6.4.9 Real-time Testing

For a test in real-time mode, the timestamps of events from one month were rewritten, so
the events appeared to have been generated within one hour. Processing these events in both
simulation and real-time mode (with the simulation option set to false and the realtime option
set to true, as explained in Section 5.3.8) led to the same results in both cases, except that the
output events were sometimes ordered in a slightly different way. This happens, because it may
not be possible to process all events arriving within one second during the same second, and an
internally created event may thus have a slightly higher arrival time in real-time mode, than it
would have in simulation mode. Furthermore, the test also revealed, that events created within
the same second are not always sorted in the same order in the output (as the time is not stored to
a resolution higher than one second, and the sorting depends on the events themselves, including
their random id, for events arriving during the same second).

While it would be possible to change the behaviour to have the same output event order in
both cases, this would be a change with far reaching (and possibly unforeseen and unnoticed)
consequences, and was not considered worth the risk of breaking functionality at such a late
stage of the design process.

6.4.10 Conclusions

The tests runs show, that the patterns identified in Section 2.3 can generally be correlated. As
the prototype was implemented and evaluated in a rather short time, more testing is however
certainly needed.

A production implementation further requires more plugins, especially action plugins for
enrichment of the events with information from data bases, such as:

� Enrichment with the information about the ISP link for a given event, to detect widespread
ISP outages.

� Enrichment with information about the name of the master and slave in the cluster, to
which an event’s host belongs (for testing, this information was extracted from the seman-
tics of the host name, which is however not always possible).

� Enrichment of events with location information for the events host, e.g. to detect a location
dependent temperature problem (with location information available, this could be done
with a threshold on the number of high-temperature events from the same location, but
different hosts, i.e., using a combination of the count element and the unique by element).

With such plugins, further correlation would be possible.

Chapter 7

Conclusions and Outlook

7.1 Conclusions

The evaluation of the implemented prototype shows that the chosen approach is well suited to
correlate the targeted event patterns. In Section 6.4, representative cases for most of the patterns
explained in Section 2.3 could be correlated, and the creation of simple additional plugins should
allow the coverage of further patterns. The evaluation also showed, that the prototype is able to
process events in real-time without any problems.

The implementation of the prototype further confirms, that functional programming is apt to
build a correlation engine more elegantly than with string evaluation or similar constructs. FSMs
can be nicely incorporated into the correlation engine by allowing regular expression matches
on events, which are both easier to use and — due to modern extensions to regular languages,
such as look-around assertions — actually more powerful than FSMs. The use of plugins as the
only interaction with external factors (besides the events themselves) makes a clear separation
between events and external factors. This makes the correlation process more transparent, and
should also facilitate future developments.

Last but not least, the implementation of the correlation engine as a homogeneous node —
without any separation between agent or central node — allows us to use the engine in any
structure: as a single node, as a central node with “agents” for preprocessing, or as a complete
tree, with any number of processing steps between leafs and the root-node.

7.2 Outlook and Future Developments

7.2.1 Rule Generation

As the correlated event patterns can be rather complex, so is the writing of correlation rules.
Writing new rules can thus be a challenging task for the human operator, and usually requires
intimate knowledge of the correlated events. While this is difficult to avoid, there are various
possibilities to support the operator.

As a first step, a good XML editor can already make the creation of rules more efficient.
Having a customized tool to create new rules might be even more helpful.

An interesting challenge is further the mining of collected events to suggest new rules. Some
techniques for automated log clustering and pattern mining are described in [65].

7.2. OUTLOOK AND FUTURE DEVELOPMENTS 106

7.2.2 Central Rule Repository

Currently, the correlation rules are always loaded from a local file. While it is possible to use a
Version Control System (VCS) to centrally store the rules, this would still require an individual
rule file for each node (unless two nodes share exactly the same set of rules).

As mentioned in Section 4.7.3, a preferable solution would be to have a central data base with
rules, and a corresponding scope for each rule (e.g. “this rule is valid for nodes, which directly
correlate events from hosts of company X ”).

The implementation of such a feature should be technically straightforward, and might be
useful especially in a setup with many correlation nodes.

7.2.3 Automatic Rule Destination Selection

Currently, the operator must decide, on which node a given rule group is executed. Since the
only difference between the nodes is the set of child nodes, whose events a given node can see, it
should be possible to decide about the optimal target node for a given rule group automatically.

This could be done in a way, similar to how the cache and delay times for events are determined
— by looking at the queries and deciding, which hosts are relevant for a given rule group. The
rule groups could then be pushed from the root node towards the leaf nodes, by simply letting
each node push a given rule group towards one if its child nodes, as long as the child node can
see all the required hosts.

A caveat here however are the plugins, which may depend on a specific property of the host,
on which they are executed (such as the availability of a specific external script).

Appendix A

Notes on Measuring Event Rates

A recurring requirement is the measurement of the event rate, or – more often – the specification
of a threshold for the event rate. If the specified threshold is exceeded, another event is generated,
or some action is triggered. Although the term event rate seems to be clearly defined, there are
several ways to measure it, with different results. The language is often unclear – for instance
“at most 100 events per day” is likely to be interpreted as “no more than 100 events between
0.00 and 23.59 of any day”, whereas “at most 100 events per 24 hours” could just as well be
interpreted as “no more than 100 events during any time window of 24 hours”.

In this section, the different approaches to measuring event rates will be discussed, particularly
with respect to their fitness for measuring network and log event rates. Furthermore, the memory
requirements of each method will be discussed. As an event correlation engine may be required
to measure a large number of event rates, with possibly long measuring windows for each event
rate, a careful consideration of the memory usage is quite important.

The computational complexity is generally a linear function of the event rate and will not be
examined further.

Throughout the whole section, the variable r will be used for the event rate (events per time
unit), rt for the threshold event rate (events per time unit), w for the window length (time units),
b for the number of bins1, c for an event count and t for the time. The function O(.) designates
the asymptotic memory complexity of each algorithm.

A.1 Sliding Window

One way to determine the event rate is to observe a time window of a given duration w and count
the events inside this window. This can be done discretely only at specific points in time (fixed
window) or continuously2 for every point in time (sliding window). In either case, the event rate
is r[t] = c[t]

w , where c[t] is the number of events inside the specific window instance at time t.
A reasonably long window size is generally assumed; in particular, w > 1

rt
is required for a

threshold decision, as each event will otherwise trigger the corresponding action.
If the event count inside the window is evaluated for every possible time point, the procedure

can be thought of as having a window of a fixed length that is moving over the input data stream3,
1If the window is split into equally sized parts, each part is called a bin.
2Time is of course always discreet inside a computer. In this context, continuous simply means that the window

step size is as small as the time-resolution of the events.
3In the case of an event correlation engine, it is actually more correct to think of an input data stream that is

moving through the window.

A.1. SLIDING WINDOW 108

while the events inside the window are continuously counted1. Formally, the sliding window W
at time t can be defined as the interval W [t] = [t, t + w). More casually, this is a window of
length w starting at time t. The event count is then c[t] = |{e ∈ E| eventtime(e) ∈W [t]}|, where
E is the set of events and eventtime(e) is the time, when e ∈ E was generated.2

t

Events

w

Figure A.1: First three instances of a sliding window.

The window length determines, how much averaging is done. With a short window, the values
for the event rate are more locally correct, whereas a long window yields more globally correct
values. Which window length is sensible, depends on the application. Statements, such as “at
least 100 events in 30 minutes”, usually imply that a 30-minute window is used. In some cases,
more than one threshold and window length may be appropriate, e.g. to specify a threshold for
reboots per day and another one per week.

Assuming, that for a given event rate threshold, the goal is to decide whether the number of
events in any time window of the specified length reaches the threshold, the answer found with
a sliding window is the most correct one. Therefore, the sliding window approach will be used
as the reference for a comparison with the other methods.

A.1.1 Memory Usage

For the examination of memory usage throughout this chapter, it will be assumed, that the events
arrive in an ordered fashion (i.e., the events arrive at the correlation engine in the same order,
in which they were generated); even though this is not necessarily a realistic assumption. If the
events arrive in an unordered fashion, more memory is required, to cache and sort the events (the
amount of required memory depends on the maximum possible delay for each individual event).
Alternatively, the arrival time of each event, rather than the creation time, could be used for the
threshold.

Assuming the events are ordered, the memory complexity of a sliding window, used to decide
whether a threshold rt is reached, is O(rt ·w), as at most rt ·w events have to be kept in memory
(e.g. if a sliding window of one hour is used to determine whether a threshold of 100 events
per hour is exceeded, at most 100 events need to be remembered; after that, the threshold is
reached and as long as there are at least 100 events inside the window, an old event can be
removed from the memory whenever a new one arrives, even if the old event is still inside the
window). Choosing a larger window leads to averaging over a longer period, but also requires
more memory.

1The actual implementation only needs to keep track of events moving inside or outside of the window, rather
than counting the events at each step; otherwise, the computational complexity would become worse than linear.

2This definition assumes knowledge about the future. In practice, the window would either have to be defined
as (t− w, t], or the output has to be delayed by a time w (which is both essentially the same thing).

A.2. FIXED WINDOW 109

If a sliding window is used to measure the event rate, rather than to decide about a threshold,
the memory complexity depends on the maximum event rate, and is generally not predictable.

A.2 Fixed Window

Instead of moving the window continuously, the fixed window approach only considers windows
with a time offset that is an integer multiple of the window length. Formally, the window is the
interval W [t] = [t′, t′ + w), with t′ = b t

w c · w and the same event count definition as above1.

t

Events

w

Figure A.2: First three instances of a fixed window.

Using a fixed window is often sensible, when there is an externally imposed separation of
the time windows (e.g. it is natural to associate 24 hour time windows with days, as they are
separated by nights).

A.2.1 Memory Usage

The fixed window approach requires a lot less memory than the sliding window approach –
rather then keeping track of all events, only one event count for the current window needs to be
remembered. The memory complexity is therefore O(1).

A.2.2 Comparison to the Sliding Window

The question can now be asked, how the rate values measured with a fixed window compare
to values measured with a sliding window of the same length, and in particular, how much the
measured maxima for the event rates differ in the worst case (as this determines, whether an
event for a specified threshold will be triggered).

It is clear that maximum event rate measured with a sliding window, maxt rslide[t], is at
least as big as the maximum measured with a fixed window, maxt rfixed[t], in any event stream,
because for every instance of the fixed window, there is an instance of the sliding window at
exactly the same position (the same argument also holds for the minimum values).

On the other hand, maxt rslide[t] can be up to twice as large as maxt rfixed[t]. This is the
case if two fixed window instances split an isolated event cloud exactly in half (a worse case is
not possible, due to the fact, that any instance of the sliding window is always encompassed by
at most two consequent fixed window instances, and one of them always contains at least half of
the events).

1b.c designates the floor operation. bxc is defined as the largest integer smaller or equal to x.

A.3. FIXED WINDOW WITH DYNAMIC START 110

A.3 Fixed Window with Dynamic Start

As a special case of the fixed window, a window of a fixed length, which starts when an event
arrives, could be used. This method is shown in Figure A.3.

t

Events

w

Figure A.3: Fixed window with a dynamic start.

A.3.1 Memory Usage

The memory usage is the same as for the general case of the fixed window.

A.3.2 Comparison to the Sliding Window

The drawing in Figure A.3 also illustrates, that a case can be constructed, where a fixed window
with a dynamic start performs almost as bad as a fixed window with a fixed start. The only
difference is that one event has to be “sacrificed” to let the fixed window start at a bad position.
This is a benefit only when there are few events.

Although the worst case is not mitigated, it can be expected that in the average case, a
dynamic start is an advantage. Specifically, if only bursts shorter than the window length are
considered, a fixed window with a dynamic start performs as good as a sliding window, as the
possibility, that the burst is split by the window, is eliminated, and the burst is always fully
encompassed by the window.

A.4 Stepping Window

By separating a fixed window into b separate bins, a trade off between the sliding and the fixed
window can be created. Separating the window into bins results in a window that steps over the
input data in steps that are an integer fraction of the window size. Formally, the window is the
interval W [t] = [t′, t′ + w), with t′ = b t·b

w c · w
b .

As an example, a fixed window of one day could be separated into 24 one-hour bins. The
step size is then one hour and 24 event count values have to be kept track of.

A.4.1 Memory usage

Only b event counts have to be kept in memory at any given moment. The memory complexity
is therefore O(b).

A.4. STEPPING WINDOW 111

t

Events

w

w/b

Figure A.4: First three instances of a stepping window with three bins.

A.4.2 Comparison to the Sliding Window

With the same argument as in the case of the fixed window, it can be said that maxt rstep[t] ≤
maxt rslide[t] for any part of the event stream. On the other hand, each instance of a sliding
window is fully encompassed by two consequent instances of the stepping window. Again, it can
be said that one of these two instances has to contain at least half of the events contained in the
sliding window instance.

t

Events

Sliding

Stepping (n)

Stepping (n+1)

Figure A.5: Problem case for the stepping window: The sliding window contains six events, but
no instance of the stepping window contains more than three events.

The worst case is therefore the same as for the fixed window. As Figure A.5 illustrates, no
matter how many bins there are, a case can always be constructed, where there are twice as
many events in the sliding window as in any instance of the stepping window. Still, the average
result can be expected to be closer to the result found with a sliding window; with more bins
leading to better results. This can be illustrated with the following reasoning: If only one event
burst with evenly spaced events of a reasonable number (specifically, more events than bins) is
considered, bursts which have the same length as the window are the most problematic case. A
sliding window will always have one instance that contains the whole burst. The fixed window
contains only 50% of the events in the worst case, 75% in average. With two bins, one bin
contains 50% of the events, and another one at least 25% (if the bin left of the “full” bin contains
less then 25% of the events, the one on the right contains more, and vice versa), i.e. the worst
case is 75%, with an average of 87.5% (uniform probability distribution). With three bins, two
bins are certain to contain 1

3 , and a third one at least 1
6 of the burst, resulting in a worst case

of ≈ 83%, etc. In the worst case, an event stream of the length of the window size, with evenly
spaced events, that is observed with a stepping window with b bins, will result in an event rate

A.5. OVERLAPPING STEPPING WINDOWS 112

that is 2b−1
2b rslide.

Another interesting possibility of a stepping window is the use of an additional bin. The
window is then W [t] = [t′, t′ + b+1

b · w), with t′ = b t·b
w c · w

b . Now, each instance of the sliding
window is fully encompassed by some instance of the stepping window, and each instance of the
stepping window is fully encompassed by two instances of the sliding window. The arguments
above therefore can be applied in the reverse direction, resulting in the relation max rslide ≤
max rstep ≤ 2 ·max rslide. Using an additional bin can thus help to find a better upper bound.

A.5 Overlapping Stepping Windows

Another idea might be to use n independent stepping windows with b bins, each shifted in time
by b/n against the previous one (i.e. overlapping). The results are however the same as when a
single stepping window with b ∗n bins is used (which also has the same memory usage), as there
are the same window instances at the same places in both cases. The idea is shown in Figure
A.6.

t

Events

w

w/b

Figure A.6: Two overlapping stepping windows with three bins each.

A.6 Event Distance

Another possible approach to measure the event rate is to measure the time distance d[t] of an
event to the next one. The event rate is r[t] = 1

d[t] . The measured rate is locally correct, i.e. it
is correct at the exact moment when it is measured.

The method is similar to using a very short sliding window; in fact, if the goal is to decide,
if a given rate threshold rt is reached, measuring the event distance will yield the same results
as using a sliding window of a duration infinitesimally larger1 than w = 1

rt
(e.g., if the threshold

is 60 events per minute, the condition is satisfied if two events appear within no more than one
second with both methods)2.

Unfortunately, measuring the event distance is unsuitable for log or network events, as the
events arrive rather randomly, and the measured event rate would be unpredictable.

1The duration of the window is chosen infinitesimally larger to avoid that one event inside the window satisfies
the condition.

2Depending on the implementation, the two methods may however yield different results for the moment when
the rate falls below the threshold.

A.7. DYNAMIC WINDOW 113

A.6.1 Memory usage

For this method, only the last occurring event has to be remembered. The memory complexity
is therefore O(1).

A.6.2 Comparison to the Sliding Window

If the events arrive evenly spaced, the event rate measured with the event distance is approxi-
mately the same as measured with a sliding window1. If the events are not arbitrarily spaced,
there has to be at least one t′ where there are two events with a distance d[t′] < 1

rslide
, therefore

maxt rdist[t] > maxt rslide[t]. On the other hand, events can be arbitrarily close, and therefore,
maxt rdist[t] can become arbitrarily high.

A.7 Dynamic Window

As a last approach, a window could be specified to begin with the first event, and end a certain
time after the last event of a burst (i.e. there is a timeout to close the window, which is reset by
every new event).

A.7.1 Memory Usage

As only one event count, as well as the time of the last event have to be remembered at any
time, the memory usage is O(1).

A.7.2 Comparison to the Sliding Window

The results depend heavily on the specified timeout T to close the window. The measured rate
is always either zero (if there are no events), or at least 1

T , as the space between consecutive
events in the window is always smaller than, or equal to T (otherwise, the window is closed).

Unfortunately, the results are otherwise rather unpredictable. For instance, if there are
multiple short bursts, with a spacing between the bursts, which is larger than the timeout, the
measured event rate would jump between zero and rather high values. As burst parameters, such
as the spacing between two bursts, are usually not known, such problems are hard to avoid2.

Another problem, especially if a large timeout is specified, is that there is no upper limit for
the window length.

A.8 Summary

Which implementation is preferable depends on what is measured. In many cases, a sliding
window is the most suitable method; however it has the largest memory usage as well. A method
with a smaller memory usage is the use of a fixed window, possibly with a dynamic start time.
A dynamic start time is useful especially when the event bursts are shorter than the window
length. A compromise between these two methods is the stepping window.

1For a reasonably long window. If the window is almost as short as the event distance, the measured rate
values differ up to a factor of two; for window lengths smaller than the event distance, the rate measured with
the sliding window can become arbitrarily high.

2Furthermore, even if there is a way to avoid certain problems, adding more complexity to the measuring
method is likely to cause unpredictable measurements in other cases. If in doubt, the simplest measuring method
should always be preferred.

A.8. SUMMARY 114

Using the event distance or a dynamic window is not a good idea for network events, as the
results can be unpredictable with these methods.

Table A.1 lists the memory usage required to decide about a rate threshold rt with a window
duration w and b bins, as well as the worst-case error of the measured maximum event rate,
relative to the maximum event rate measured with a sliding window.

Algorithm Memory usage Relation of max r to max rslide

Sliding window O(t · w) max r = max rslide (reference value)
Fixed window O(1) max rslide

2 ≤ max rfixed ≤ max rslide

Fixed window, dynamic start O(1) max rslide

2 ≤ max rfixed ≤ max rslide

Stepping window, b bins O(b) max rslide

2 ≤ max rstep ≤ max rslide

Stepping window, b + 1 bins O(b + 1) = O(b) max rslide ≤ max rstep ≤ 2 ·max rslide

Event distance O(1) max rslide > max rdist <∞
Dynamic Window O(1) (r ≥ 1

timeout)

Table A.1: Overview of rate measuring approaches.

Appendix B

XML Document Type Definitions
and Examples

This section contains the DTDs and examples of corresponding XML documents.

B.1 Events

B.1.1 Document Type Definition

The following listing shows the DTD for events:
1 < !−− root e l ement : l i s t o f even t s −−>
2 < !ELEMENT events (event *)>
3

4 < !−− l e v e l 1 : event −−>
5 < !ELEMENT event (name , d e s c r i p t i o n , id , type , s tatus , count ? , host , c r ea t i on ,
6 a t t r i b u t e s ? , r e f e r e n c e s ? , h i s t o r y ?)>
7

8 < !−− l e v e l 2 −−>
9 < !ELEMENT name (#PCDATA)>

10 < !ELEMENT d e s c r i p t i o n (#PCDATA)>
11 < !ELEMENT id (#PCDATA)>
12 < !ELEMENT type (#PCDATA)>
13 < !ELEMENT s t a t u s (#PCDATA)>
14 < !ELEMENT count (#PCDATA)>
15 < !ELEMENT host (#PCDATA)>
16 < !ELEMENT c r e a t i o n (#PCDATA)>
17 < !ELEMENT a t t r i b u t e s (a t t r i b u t e)*>
18 < !ELEMENT r e f e r e n c e s (r e f e r e n c e)*>
19 < !ELEMENT h i s t o r y (h i s t o r y e n t r y)*>
20

21 < !−− l e v e l 3 −−>
22 < !ELEMENT a t t r i b u t e (#PCDATA)>
23 < !ATTLIST a t t r i b u t e key CDATA #REQUIRED>
24 < !ELEMENT r e f e r e n c e (#PCDATA)>
25 < !ATTLIST r e f e r e n c e type (parent | c h i l d | c r o s s) #REQUIRED>
26 < !ELEMENT h i s t o r y e n t r y (ru le , host , timestamp , f i e l d s ? , reason ?)>
27

28 < !−− l e v e l 4 −−>
29 < !ELEMENT r u l e (groupname , rulename)>
30 < !ELEMENT timestamp (#PCDATA)>
31 < !ELEMENT f i e l d s (f i e l d *)>

B.1. EVENTS 116

32 < !ELEMENT reason (#PCDATA)>
33

34 < !−− l e v e l 5 −−>
35 < !ELEMENT groupname (#PCDATA)>
36 < !ELEMENT rulename (#PCDATA)>
37 < !ELEMENT f i e l d (#PCDATA)>

B.1.2 Examples

An example of some independent, fictional events, which are valid against the DTD specified
above, can be seen in the following listing:

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE events SYSTEM ” events . dtd”>
3 < !−− some independent , f i c t i o n a l even t s −−>
4 <events>
5 <event>
6 <name>NIC:ETHERNET:LINKUP</name>
7 <d e s c r i p t i o n>The ethe rne t network i n t e r n e t c o n t r o l l e r i s up .</ d e s c r i p t i o n>
8 <id>e9294e806d02fd8ebd90e345434c16a3</ id>
9 <type>raw</ type>

10 <s t a t u s>a c t i v e</ s t a t u s>
11 <host>host−a−0</ host>
12 <c r e a t i o n>1243039102</ c r e a t i o n>
13 <a t t r i b u t e s>
14 <a t t r i b u t e key=” i n t e r f a c e ”>1</ a t t r i b u t e>
15 </ a t t r i b u t e s>
16 </ event>
17 <event>
18 <name>MAIL:FRESHCLAM:ERROR</name>
19 <d e s c r i p t i o n>The ant i−v i r u s s i g n a t u r e s could not be updated .</ d e s c r i p t i o n>
20 <id>ae84e1e89470ddd1eca f33 f fb1b7538f</ id>
21 <type>raw</ type>
22 <s t a t u s> i n a c t i v e</ s t a t u s>
23 <host>host−b−0</ host>
24 <c r e a t i o n>1244014810</ c r e a t i o n>
25 <h i s t o r y>
26 <h i s t o r y e n t r y>
27 <r u l e>
28 <groupname>f r e shc lam</groupname>
29 <rulename>detect−s i n g l e−events</ rulename>
30 </ r u l e>
31 <host>host−b−0</ host>
32 <timestamp>1244014940</timestamp>
33 < f i e l d s>< f i e l d>s t a t u s</ f i e l d></ f i e l d s>
34 <reason>S i n g l e e r r o r s can be ignored .</ reason>
35 </ h i s t o r y e n t r y>
36 </ h i s t o r y>
37 </ event>
38 </ events>
39

40 < !−−
41 vim: sw=2 t s=2
42 −−>

B.2. LINE-BASED INPUT TRANSLATION 117

B.2 Line-based Input Translation

B.2.1 Document Type Definition

The following listing shows the DTD for line-based input translation:

1 < !−− root e l ement : l i s t o f matches −−>
2 < !ELEMENT t r a n s l a t i o n l i n e b a s e d (match)*>
3

4 < !−− l e v e l 1 : match −−>
5 < !ELEMENT match (match | d e s c r i p t i o n | host | a t t r i b u t e | datet ime | c r e a t e | drop)*>
6 < !ATTLIST match regexp CDATA #REQUIRED>
7

8 < !−− l e v e l 2 : match element −−>
9 < !−− event d e s c r i p t i on −−>

10 < !ELEMENT d e s c r i p t i o n (#PCDATA|matchgroup)*>
11 < !ELEMENT host (#PCDATA|matchgroup)*>
12 < !ELEMENT a t t r i b u t e (#PCDATA|matchgroup)*>
13 < !ATTLIST a t t r i b u t e name CDATA #REQUIRED>
14 < !ELEMENT datet ime (#PCDATA|matchgroup)*>
15 < !ATTLIST datet ime
16 format CDATA #REQUIRED
17 u s e c u r r e n t y e a r (t rue | f a l s e) ” f a l s e ”
18 >
19 < !−− ac t i ons −−>
20 < !ELEMENT c r e a t e (#PCDATA)>
21 < !ATTLIST c r e a t e s t a t u s (a c t i v e | i n a c t i v e) ” a c t i v e ”>
22 < !ELEMENT drop EMPTY>
23

24 < !−− l e v e l 3 : matchgroup −−>
25 < !ELEMENT matchgroup EMPTY>
26 < !ATTLIST matchgroup
27 group CDATA #REQUIRED
28 >

B.2.2 Examples

This input translation specification can be used for any line-based input, such as syslog messages.
For instance, we might want to match SSHd log messages, such as the ones shown in the following
listing:

1 Jun 15 09 : 50 : 33 se rver −002 sshd [4 6 2 0] : Fa i l ed password f o r root from 1 0 . 0 . 2 . 6 8
port 52361 ssh2

2 Jun 15 09 : 50 : 35 se rver −002 sshd [4 6 2 0] : Accepted password f o r root from 1 0 . 0 . 1 5 . 1 8
port 52411 ssh2

In that case, the following XML translation rules could be used, which also show how a catch-all
match can be specified:

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE t r a n s l a t i o n l i n e b a s e d SYSTEM ” t r a n s l a t i o n l i n e b a s e d . dtd”>
3

4 <t r a n s l a t i o n l i n e b a s e d>
5 < !−− SSHd lo g messages −−>
6 <match regexp=” ˆ ([ˆ]+ \d{1 ,2} \d\ d: \d\ d: \d\d) ([ˆ]+) sshd ”>
7 <datet ime format=”%b %d %H:%M:%S” u s e c u r r e n t y e a r=” true ”>
8 <matchgroup group=”1”/>
9 </ datet ime>

10 <host><matchgroup group=”2”/></ host>
11 <match regexp=” Fa i l ed password f o r ([ˆ]+) from ([ˆ]+)”>

B.3. RULES 118

12 <a t t r i b u t e name=”username”><matchgroup group=”1”/></ a t t r i b u t e>
13 <a t t r i b u t e name=” s r c h o s t ”><matchgroup group=”2”/></ a t t r i b u t e>
14 <d e s c r i p t i o n>An u n s u c c e s s f u l SSH l o g i n happened .</ d e s c r i p t i o n>
15 <c r e a t e>SSH:LOGIN:FAILED</ c r e a t e>
16 </match>
17 <match regexp=”Accepted password f o r ([ˆ]+) from ([ˆ]+)”>
18 <a t t r i b u t e name=”username”><matchgroup group=”1”/></ a t t r i b u t e>
19 <a t t r i b u t e name=” s r c h o s t ”><matchgroup group=”2”/></ a t t r i b u t e>
20 <d e s c r i p t i o n>A s u c c e s s f u l SSH l o g i n happened .</ d e s c r i p t i o n>
21 <c r e a t e>SSH:LOGIN:SUCCESS</ c r e a t e>
22 </match>
23 </match>
24

25 < !−− catch a l l match −−>
26 <match regexp=” .* ”>
27 <d e s c r i p t i o n>An unknown log message .</ d e s c r i p t i o n>
28 < !−− match group 0 i s the whole match: save i t as a t t r i b u t e −−>
29 <a t t r i b u t e name=” l o g l i n e ”><matchgroup group=”0”/></ a t t r i b u t e>
30 <c r e a t e>SYSLOG:UNKNOWN</ c r e a t e>
31 </match>
32 </ t r a n s l a t i o n l i n e b a s e d>

B.3 Rules

B.3.1 Document Type Definition

The following listing shows the DTD for rules:

1 < !−− root element −−>
2 < !ELEMENT r u l e s (group *)>
3

4 < !−− l e v e l 1 : groups −−>
5 < !ELEMENT group (r u l e +)>
6 < !ATTLIST group
7 name CDATA #REQUIRED
8 order CDATA #REQUIRED
9 d e s c r i p t i o n CDATA #IMPLIED

10 >
11

12 < !−− l e v e l 2 : r u l e s −−>
13 < !ELEMENT r u l e (events , c o n d i t i o n s ? , ac t i ons , a l t e r n a t i v e a c t i o n s ?)>
14 < !ATTLIST r u l e
15 name CDATA #REQUIRED
16 order CDATA #REQUIRED
17 d e s c r i p t i o n CDATA #IMPLIED
18 >
19

20 < !−− l e v e l 3 : ECAA −−>
21 < !−− event s (ru l e t r i g g e r s) −−>
22 < !ELEMENT events (when c las s | when event | when any)*>
23 < !−− cond i t i ons −−>
24 < !ENTITY % c o n d i t i o n s ”and | or | not | context | t r i gge r match | count | sequence |
25 pattern | with in | c o n d i t i o n p l u g i n ”>
26 < !ELEMENT c o n d i t i o n s (%c o n d i t i o n s ;) *>
27 < !−− ac t i ons (executed i f cond i t i ons match) −−>
28 < !ENTITY % a c t i o n s ”drop | forward | compress | aggregate |modify | mod i f y a t t r i bu t e |
29 suppres s | a s s o c i a t e w i t h c o n t e x t | a d d r e f e r e n c e s | c r e a t e |
30 c r e a t e c o n t e x t | d e l e t e c o n t e x t | modi fy context | a c t i o n p l u g i n ”>
31 < !ELEMENT a c t i o n s (subblock | s e l e c t e v e n t s |% a c t i o n s ;) *>
32 < !−− a l t e r n a t i v e a c t i o n s (executed i f cond i t i ons do not match) −−>

B.3. RULES 119

33 < !ELEMENT a l t e r n a t i v e a c t i o n s (subblock | s e l e c t e v e n t s |% a c t i o n s ;) *>
34

35 < !−− l e v e l 4 and below −−>
36

37 < !−− event s l i s t −−>
38 < !ELEMENT when c las s (#PCDATA)> < !−− a c l a s s o f event s −−>
39 < !ATTLIST when c las s type CDATA #IMPLIED>
40 < !ELEMENT when event (#PCDATA)> < !−− an event −−>
41 < !ATTLIST when event type CDATA #IMPLIED>
42 < !ELEMENT when any EMPTY> < !−− any event can t r i g g e r the ru l e −−>
43 < !ATTLIST when any type CDATA #IMPLIED>
44

45 < !−− cond i t i ons l i s t −−>
46 < !−− boolean expres s ion cons t ruc t i on −−>
47 < !ELEMENT and (%c o n d i t i o n s ;)+>
48 < !ELEMENT or (%c o n d i t i o n s ;)+>
49 < !ELEMENT not (%c o n d i t i o n s ;)>
50 < !−− cond i t i ons on con t ex t s −−>
51 < !ELEMENT context (#PCDATA| t r i g g e r)*>
52 < !ATTLIST context
53 counter CDATA #IMPLIED
54 counter op (ge | l e | eq) ”ge”
55 group CDATA #IMPLIED
56 >
57 < !−− cond i t i ons on the t r i g g e r −−>
58 < !ELEMENT t r i gge r match (e v e n t c l a s s | event name | event type | e v e n t s t a t u s |
59 event hos t | e v e n t a t t r i b u t e | event min age)*>
60 < !−− cond i t i ons on event s −−>
61 < !ELEMENT count (event query)>
62 < !ATTLIST count
63 th r e sho ld CDATA #REQUIRED
64 op (eq | ge | l e) ”ge”
65 >
66 < !ELEMENT sequence (event query)+>
67 < !ATTLIST sequence
68 s o r t by (c r e a t i o n | a r r i v a l) ” c r e a t i o n ”
69 match (any | a l l) ” a l l ”
70 >
71 < !ELEMENT pattern (alphabet , regexp)>
72 < !ELEMENT alphabet (symbol)+>
73 < !ATTLIST alphabet so r t by (c r e a t i o n | a r r i v a l) ” c r e a t i o n ”>
74 < !ELEMENT symbol (event query)>
75 < !ATTLIST symbol l e t t e r CDATA #REQUIRED>
76 < !ELEMENT regexp (#PCDATA)>
77 < !ELEMENT with in (event query)+>
78 < !ATTLIST with in
79 timeframe CDATA #REQUIRED
80 t i m e r e f (c r e a t i o n | a r r i v a l) ” c r e a t i o n ”
81 match (any | a l l) ” a l l ”
82 >
83 < !ELEMENT c o n d i t i o n p l u g i n (p lug in parameter * , event query *)>
84 < !ATTLIST c o n d i t i o n p l u g i n name CDATA #REQUIRED>
85 < !ELEMENT plug in parameter (#PCDATA)>
86 < !ATTLIST plug in parameter name CDATA #REQUIRED>
87

88 < !−− ac t i ons / a l t e r n a t i v e a c t i o n s l i s t −−>
89 < !−− subb l ock (nes ted condi t ions−act ions−a l t e r n a t i v e a c t i o n s b l o c k) −−>
90 < !ELEMENT subblock (cond i t i ons , ac t i ons , a l t e r n a t i v e a c t i o n s ?)>
91 < !−− event s e l e c t i o n −−>
92 < !ELEMENT s e l e c t e v e n t s ((event query) ,(% a c t i o n s ;) *)>
93 < !−− event opera t ions −−>
94 < !ELEMENT drop EMPTY> < !−− drop event s −−>

B.3. RULES 120

95 < !ELEMENT forward EMPTY> < !−− forward event s −−>
96 < !ELEMENT compress EMPTY> < !−− r ep l ace mu l t i p l e event s by a count −−>
97 < !ELEMENT aggregate (event)> < !−− aggrega te event s −−>
98 < !ELEMENT modify EMPTY> < !−− change the event ’ s s t a t u s / l o c a l f i e l d −−>
99 <!ATTLIST modify

100 s t a t u s (a c t i v e | i n a c t i v e) #IMPLIED
101 l o c a l (t rue | f a l s e) #IMPLIED
102 reason CDATA #IMPLIED
103 >
104 <!ELEMENT mod i f y a t t r i bu t e (#PCDATA)> <!−− modify an event a t t r i b u t e −−>
105 <!ATTLIST mod i f y a t t r i bu t e
106 name CDATA #REQUIRED
107 reason CDATA #IMPLIED
108 op (s e t | i n c | dec) ” s e t ”
109 >
110 <!ELEMENT suppres s (event query)> <!−− supre s s the s e l e c t e d events −−>
111 <!ATTLIST suppres s reason CDATA #IMPLIED>
112 <!ELEMENT a s s o c i a t e w i t h c o n t e x t (#PCDATA| t r i g g e r)*>
113 <!ELEMENT a d d r e f e r e n c e s (event query)>
114 <!ATTLIST a d d r e f e r e n c e s
115 type (c h i l d | parent | c r o s s) ” c r o s s ”
116 reason CDATA #IMPLIED
117 >
118 <!ELEMENT c r e a t e (event)> <!−− c r e a t e a new event −−>
119 <!−− context ope ra t i on s −−>
120 <!ELEMENT c r e a t e c o n t e x t (context name , event ?)>
121 <!ATTLIST c r e a t e c o n t e x t
122 t imeout CDATA #REQUIRED
123 counter CDATA #IMPLIED
124 r epeat (t rue | f a l s e) ” f a l s e ”
125 d e l a y a s s o c i a t e d (t rue | f a l s e) ” f a l s e ”
126 >
127 <!ELEMENT context name (#PCDATA| t r i g g e r)*>
128 <!ELEMENT d e l e t e c o n t e x t (#PCDATA| t r i g g e r)*>
129 <!ELEMENT modi fy context (#PCDATA| t r i g g e r)*>
130 <!ATTLIST modi fy context
131 r e s e t t i m e r (t rue | f a l s e) ” f a l s e ”
132 r e s e t a s s o c i a t e d e v e n t s (t rue | f a l s e) ” f a l s e ”
133 counte r va lue CDATA #IMPLIED
134 counter op (s e t | i n c | dec) ” s e t ”
135 >
136 <!−− ac t i on p lug in −−>
137 <!ELEMENT a c t i o n p l u g i n (p lug in parameter*)>
138 <!ATTLIST a c t i o n p l u g i n name CDATA #REQUIRED>
139 <!−− t r i g g e r −−>
140 <!ELEMENT t r i g g e r EMPTY>
141 <!ATTLIST t r i g g e r f i e l d CDATA #REQUIRED>
142

143 <!−− event s e l e c t i o n −−>
144 <!ENTITY % query ope ra t i on s ” i n t e r s e c t i o n | union | complement | f i r s t o f | l a s t o f |
145 unique by | i s t r i g g e r | i n c o n t e x t | match query |
146 e v e n t c l a s s | event name | event type | e v e n t s t a t u s |
147 event hos t | e v e n t a t t r i b u t e | event min age”>
148 <!ELEMENT event query (%que ry ope ra t i on s ;)*>
149 <!−− n o t e : max age i s r equ i r ed in some cases , but not in o the r s −−>
150 <!ATTLIST event query
151 max age CDATA #IMPLIED
152 delay (t rue | f a l s e) ” f a l s e ”
153 t ime source (c r e a t i o n | a r r i v a l) ” a r r i v a l ”
154 name CDATA #IMPLIED
155 >
156 <!ELEMENT i n t e r s e c t i o n (%que ry ope ra t i on s ;)*>

B.3. RULES 121

157 <!ELEMENT union (%que ry ope ra t i on s ;)*>
158 <!ELEMENT complement (%que ry ope ra t i on s ;)>
159 <!ELEMENT f i r s t o f (%que ry ope ra t i on s ;)>
160 <!ATTLIST f i r s t o f s o r t by (c r e a t i o n | a r r i v a l) ” c r e a t i o n”>
161 <!ELEMENT l a s t o f (%que ry ope ra t i on s ;)>
162 <!ATTLIST l a s t o f s o r t by (c r e a t i o n | a r r i v a l) ” c r e a t i o n”>
163 <!ELEMENT unique by (%query ope ra t i on s ;)>
164 <!ATTLIST unique by
165 f i e l d CDATA #REQUIRED
166 s o r t by (c r e a t i o n | a r r i v a l) ” c r e a t i o n ”
167 keep (f i r s t | l a s t) ” l a s t ”
168 >
169 <!ELEMENT i s t r i g g e r EMPTY>
170 <!ELEMENT i n c o n t e x t (#PCDATA| t r i g g e r)*>
171 <!ATTLIST i n c o n t e x t group CDATA #IMPLIED>
172 <!ELEMENT match query (#PCDATA)>
173 <!ELEMENT e v e n t c l a s s (#PCDATA)>
174 <!ELEMENT event name (#PCDATA)>
175 <!ELEMENT event type (#PCDATA)>
176 <!ELEMENT e v e n t s t a t u s (#PCDATA)>
177 <!ELEMENT event hos t (#PCDATA| t r i g g e r)*>
178 <!ELEMENT e v e n t a t t r i b u t e (#PCDATA| t r i g g e r)*>
179 <!ATTLIST e v e n t a t t r i b u t e
180 name CDATA #REQUIRED
181 op (eq | ge | l e | re) ”eq”
182 regexp CDATA #IMPLIED
183 >
184 <!ELEMENT event min age (#PCDATA)> <!−− age at a r r i v a l −−>
185

186 <!−− event s p e c i f i c a t i o n −−>
187 <!ELEMENT event (name , d e s c r i p t i o n ? , a t t r i b u t e *)>
188 <!ATTLIST event
189 s t a t u s (a c t i v e | i n a c t i v e) ” a c t i v e ”
190 l o c a l (t rue | f a l s e) ” t rue ”
191 i n j e c t (input | output) ” input ”
192 >
193 <!ELEMENT name (#PCDATA)>
194 <!ELEMENT d e s c r i p t i o n (#PCDATA| t r i g g e r)*>
195 <!ELEMENT a t t r i b u t e (#PCDATA| t r i g g e r)*>
196 <!ATTLIST a t t r i b u t e name CDATA #REQUIRED>

B.3.2 Examples

The following listing shows an example XML rule file (which is valid against the DTD specified
above) with rules for some of the patterns identified in Section 2.3 (please note that these rules
are examples only and were not tested):

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < !DOCTYPE r u l e s SYSTEM ” r u l e s . dtd”>
3

4 < !−−
5 Note: t he se r u l e s are g iven as examples and were not t e s t e d with rea l− l i v e
6 event s .
7 −−>
8

9 <r u l e s>
10 < !−−
11 A group of r u l e s to handle event s t ha t are generated at a high ra t e ;
12 t h e s e r u l e s are s u i t a b l e f o r c o r r e l a t i o n on the source hos t s only , as
13 they do not d i s t i n g u i s h between event s from d i f f e r e n t hos t s .

B.3. RULES 122

14

15 => s o l v e s some of the problems de sc r i b ed in s e c t i on 2 . 3 . 1 and 2 .3 . 2
16 −−>
17 <group name=” event−burst−handl ing ” order=”1”>
18 < !−− Forward f i r s t event , then drop fo r 5 min . −−>
19 <r u l e name=” forward−f i r s t −drop−othe r s ” order=”1”>
20 <events>
21 <when c las s>BURSTY EVENTS</ when c las s>
22 </ events>
23 <c o n d i t i o n s>
24 <context>DROP<t r i g g e r f i e l d=”name”/></ context>
25 </ c o n d i t i o n s>
26 <a c t i o n s>
27 <drop/> < !−− app l i e s to the t r i g g e r −−>
28 </ a c t i o n s>
29 <a l t e r n a t i v e a c t i o n s>
30 <c r e a t e c o n t e x t timeout=”300”>
31 <context name>DROP<t r i g g e r f i e l d=”name”/></ context name>
32 </ c r e a t e c o n t e x t>
33 < !−− t r i g g e r w i l l be forwarded un l e s s prevented by another ru l e −−>
34 </ a l t e r n a t i v e a c t i o n s>
35 </ r u l e>
36 < !−− a l t e r n a t i v e : change to up/down s i g n a l l i n g −−>
37 <r u l e name=”change−s i g n a l i n g−winbind” order=”2”
38 d e s c r i p t i o n=”Change s i g n a l i n g o f WINBIND events to up/down s i g n a l i n g . ”>
39 <events>
40 <when event>WINBIND:CONF:ADCONN</ when event>
41 </ events>
42 <c o n d i t i o n s>
43 <not>
44 <context>WINBIND CONF ADCONN<t r i g g e r f i e l d=” host ”/></ context>
45 </ not>
46 </ c o n d i t i o n s>
47 <a c t i o n s>
48 <c r e a t e c o n t e x t timeout=”5m” counter=”1”>
49 <context name>WINBIND CONF ADCONN<t r i g g e r f i e l d=” host ”/></ context name>
50 <event l o c a l=” f a l s e ” i n j e c t=” output ”>
51 <name>WINBIND:CONF:ADCONN:STOP</name>
52 <d e s c r i p t i o n>No more messages s i n c e 5 min .</ d e s c r i p t i o n>
53 </ event>
54 </ c r e a t e c o n t e x t>
55 <c r e a t e>
56 <event l o c a l=” f a l s e ”>
57 <name>WINBIND:CONF:ADCONN:START</name>
58 <d e s c r i p t i o n>Got a f i r s t message .</ d e s c r i p t i o n>
59 </ event>
60 </ c r e a t e>
61 <drop/>
62 </ a c t i o n s>
63 <a l t e r n a t i v e a c t i o n s> < !−− con tex t a l ready e x i s t s −−>
64 <modi fy context r e s e t t i m e r=” true ” counter op=” inc ” counte r va lue=”1”>
65 WINBIND CONF ADCONN<t r i g g e r f i e l d=” host ”/>
66 </ modi fy context>
67 <drop/>
68 </ a l t e r n a t i v e a c t i o n s>
69 </ r u l e>
70 < !−− a l t e r n a t i v e : compression −−>
71 <r u l e name=” compress ” order=”3” d e s c r i p t i o n=”Compression r u l e . ”>
72 <events>
73 <when c las s>COMPRESSABLE</ when c las s>
74 </ events>
75 <c o n d i t i o n s>

B.3. RULES 123

76 <count th r e sho ld=”5”>
77 <event query max age=”2m” delay=” true ”>
78 <e v e n t c l a s s>COMPRESSABLE</ e v e n t c l a s s>
79 <event type>raw</ event type>
80 </ event query>
81 </ count>
82 </ c o n d i t i o n s>
83 <a c t i o n s>
84 <s e l e c t e v e n t s>
85 <event query max age=”2m” delay=” true ”>
86 <e v e n t c l a s s>COMPRESSABLE</ e v e n t c l a s s>
87 </ event query>
88 <compress />
89 </ s e l e c t e v e n t s>
90 </ a c t i o n s>
91 </ r u l e>
92 </group>
93

94 < !−−
95 A group to aggrega te o ld event s (e . g . from a hos t t ha t was down fo r some time)
96

97 => s o l v e s the problem desc r i b ed in s e c t i on 2 .3 . 3
98 −−>
99 <group name=” c o l l e c t−o ld ” order=”50” d e s c r i p t i o n=” Aggregat ion o f o ld events . ”>

100 <r u l e name=” create−context ” order=”1”>
101 <events>
102 <when any/>
103 </ events>
104 <c o n d i t i o n s>
105 <t r i gge r match>
106 <event min age>1d</ event min age>
107 </ t r i gge r match>
108 </ c o n d i t i o n s>
109 <a c t i o n s>
110 <subblock>
111 <c o n d i t i o n s>
112 <not><context>OLD EVENTS</ context></ not>
113 </ c o n d i t i o n s>
114 <a c t i o n s>
115 <c r e a t e c o n t e x t timeout=”10m”>
116 <context name>OLD EVENTS</ context name>
117 <event>
118 <name>OLD:EVENTS</name>
119 </ event>
120 </ c r e a t e c o n t e x t>
121 </ a c t i o n s>
122 </ subblock>
123 </ a c t i o n s>
124 </ r u l e>
125 <r u l e name=” aggregate ” order=”2”>
126 <events>
127 <when event type=” timeout ”>OLD:EVENTS</ when event>
128 </ events>
129 <c o n d i t i o n s>
130 <count th r e sho ld=”3”>
131 <event query name=” o l d e v e n t s ” de lay=” true ” max age=”10m”>
132 <event min age>1d</ event min age>
133 </ event query>
134 </ count>
135 </ c o n d i t i o n s>
136 <a c t i o n s>
137 <s e l e c t e v e n t s>

B.3. RULES 124

138 <event query>
139 <match query>o l d e v e n t s</ match query>
140 </ event query>
141 <modify s t a t u s=” i n a c t i v e ” reason=”The event i s outdated . ”/>
142 <aggregate>
143 <event l o c a l=” f a l s e ”>
144 <name>OLD:EVENTS:COLLECTION</name>
145 <d e s c r i p t i o n>This event c o l l e c t s outdated events .</ d e s c r i p t i o n>
146 </ event>
147 </ aggregate>
148 </ s e l e c t e v e n t s>
149 </ a c t i o n s>
150 </ r u l e>
151

152 </group>
153

154 < !−−
155 Expect up a f t e r a down (because i t i s not necessary to reopen the t i c k e t)
156

157 => p a r t i a l l y s o l v e s the problem desc r i b ed in Sect ion 2 .3 . 4
158 −−>
159 <group name=” nurse−handl ing ” order=”100”>
160 <r u l e name=”make−context ” order=”1”>
161 <events>
162 <when event>NURSE:SERVICE:DOWN</ when event>
163 </ events>
164 <c o n d i t i o n s>
165 <not><context>NURSE SERVICE DOWN<t r i g g e r f i e l d=” host ”/></ context></ not>
166 </ c o n d i t i o n s>
167 <a c t i o n s>
168 <c r e a t e c o n t e x t timeout=”2h”>
169 <context name>NURSE SERVICE DOWN<t r i g g e r f i e l d=” host ”/></ context name>
170 <event>
171 <name>NURSE−HANDLING:SERVICE:DOWN</name>
172 </ event>
173 </ c r e a t e c o n t e x t>
174 <a s s o c i a t e w i t h c o n t e x t>
175 NURSE SERVICE DOWN<t r i g g e r f i e l d=” host ”/>
176 </ a s s o c i a t e w i t h c o n t e x t>
177 </ a c t i o n s>
178 </ r u l e>
179 <r u l e name=” context−t imeout ” order=”2”>
180 <events>
181 <when event type=” timeout ”>NURSE−HANDLING:SERVICE:DOWN</ when event>
182 </ events>
183 <c o n d i t i o n s>
184 </ c o n d i t i o n s>
185 <a c t i o n s>
186 <s e l e c t e v e n t s>
187 <event query>
188 <i n c o n t e x t>NURSE SERVICE DOWN</ i n c o n t e x t>
189 </ event query>
190 <aggregate>
191 <event>
192 <name>NURSE:SERVICE:STILL:DOWN</name>
193 <d e s c r i p t i o n>S e r v i c e i s s t i l l down .</ d e s c r i p t i o n>
194 </ event>
195 </ aggregate>
196 </ s e l e c t e v e n t s>
197 </ a c t i o n s>
198 </ r u l e>
199 <r u l e name=” catch−up” order=”3”>

B.3. RULES 125

200 <events>
201 <when event>NURSE:SERVICE:UP</ when event>
202 </ events>
203 <c o n d i t i o n s>
204 <context>NURSE SERVICE DOWN</ context>
205 </ c o n d i t i o n s>
206 <a c t i o n s>
207 < !−− no need to reopen the t i c k e t : −−>
208 <modify s t a t u s=” i n a c t i v e ” reason=” S i t u a t i o n back to normal . ”/>
209 <d e l e t e c o n t e x t>NURSE SERVICE DOWN</ d e l e t e c o n t e x t>
210 </ a c t i o n s>
211 <a l t e r n a t i v e a c t i o n s>
212 < !−− UP without a down be fo r e ; maybe generate a warning here −−>
213 </ a l t e r n a t i v e a c t i o n s>
214 </ r u l e>
215 </group>
216

217 < !−−
218 Ignore i r r e l e v a n t unique event s
219

220 => s o l v e s the problem desc r i b ed in s e c t i on 2 .3 . 5
221 −−>
222 <group name=” freshc lam−handl ing ” order=”110”>
223 < !−− AV: ignore i f i t occurs only once in 5h , but c rea t e t h r e s ho l d −−>
224 <r u l e name=” freshc lam−i gnore−i s o l a t e d ” order=”1”>
225 <events>
226 <when event>MAIL:FRESHCLAM:ERROR</ when event>
227 </ events>
228 <c o n d i t i o n s>
229 <not><context>CLAM IGNORED<t r i g g e r f i e l d=” host ”/></ context></ not>
230 </ c o n d i t i o n s>
231 <a c t i o n s>
232 <c r e a t e c o n t e x t timeout=”5h”>
233 <context name>CLAM IGNORED<t r i g g e r f i e l d=” host ”/></ context name>
234 </ c r e a t e c o n t e x t>
235 < !−− app l i e s to t r i g g e r e v en t : −−>
236 <modify s t a t u s=” i n a c t i v e ” reason=” S i n g l e event can be ignored . ”/>
237 <a s s o c i a t e w i t h c o n t e x t>
238 CLAM IGNORED<t r i g g e r f i e l d=” host ”/>
239 </ a s s o c i a t e w i t h c o n t e x t>
240 </ a c t i o n s>
241 <a l t e r n a t i v e a c t i o n s>
242 < !−− crea t e a new event , t ha t r e f e r ence s both t ha t occured −−>
243 <a d d r e f e r e n c e s>
244 <event query max age=”5h”>
245 <union>
246 < i s t r i g g e r />
247 <i n c o n t e x t>CLAM IGNORED<t r i g g e r f i e l d=” host ”/></ i n c o n t e x t>
248 </ union>
249 </ event query>
250 </ a d d r e f e r e n c e s>
251 </ a l t e r n a t i v e a c t i o n s>
252 </ r u l e>
253 < !−−
254 But catch i f t he re were more than 50 in 30 days on a l l hos t − we use a
255 con tex t wi th a counter here , to avoid having to keep the event s
256 −−>
257 <r u l e name=” freshc lam−longtime−monitor ing ” order=”2”>
258 <events>
259 <when event>MAIL:FRESHCLAM:ERROR</ when event>
260 </ events>
261 <c o n d i t i o n s>

B.3. RULES 126

262 <context>CLAM LONGTIME</ context>
263 </ c o n d i t i o n s>
264 <a c t i o n s>
265 <modi fy context counte r va lue=”1” counter op=” inc ”>
266 CLAM LONGTIME
267 </ modi fy context>
268 <subblock>
269 <c o n d i t i o n s>
270 <context counter=”50”>CLAM LONGTIME</ context>
271 </ c o n d i t i o n s>
272 <a c t i o n s>
273 <c r e a t e>
274 <event>
275 <name>CLAM:LONGTIME:THRESHOLD</name>
276 <d e s c r i p t i o n>
277 More than 50 MAIL:FRESHCLAM:ERROR events were generated in
278 30 days .
279 </ d e s c r i p t i o n>
280 </ event>
281 </ c r e a t e>
282 </ a c t i o n s>
283 </ subblock>
284 </ a c t i o n s>
285 <a l t e r n a t i v e a c t i o n s>
286 <c r e a t e c o n t e x t timeout=”30d” counter=”1”>
287 <context name>CLAM LONGTIME</ context name>
288 </ c r e a t e c o n t e x t>
289 </ a l t e r n a t i v e a c t i o n s>
290 </ r u l e>
291 </group>
292

293 < !−−
294 Check whether VPN f l i c k e r i n g was r e l a t e d to an ISP outage
295

296 => s o l u t i on fo r the problem desc r i b ed in s e c t i on 2.6
297 −−>
298 <group name=” c o r r e l a t e−i sp−outage ” order=”120”>
299 <r u l e name=”check−i sp−outage ” order=”1”>
300 <events>
301 <when event>VRRP:MONITOR:VPN:DOWN</ when event>
302 <when event>VRRP:MONITOR:VPN:UP</ when event>
303 <when event>ISP:HOST:UNREACHABLE</ when event>
304 </ events>
305 <c o n d i t i o n s>
306 < !−− co r r e a l a t e i f a l l 3 were crea ted wi th in 3 min −−>
307 <with in timeframe=”3m” match=”any”>
308 <event query max age=”5m” name=” i s p ”>
309 <event name>ISP:HOST:UNREACHABLE</event name>
310 <event type>raw</ event type>
311 <e v e n t s t a t u s>a c t i v e</ e v e n t s t a t u s>
312 <e v e n t a t t r i b u t e name=” host ”>
313 <t r i g g e r f i e l d=” a t t r i b u t e s . host ”/>
314 </ e v e n t a t t r i b u t e>
315 </ event query>
316 <event query max age=”5m” name=”up”>
317 < l a s t o f>
318 < i n t e r s e c t i o n>
319 <event name>VRRP:MONITOR:VPN:UP</event name>
320 <event type>raw</ event type>
321 <e v e n t s t a t u s>a c t i v e</ e v e n t s t a t u s>
322 <e v e n t a t t r i b u t e name=” host ”>
323 <t r i g g e r f i e l d=” a t t r i b u t e s . host ”/>

B.3. RULES 127

324 </ e v e n t a t t r i b u t e>
325 </ i n t e r s e c t i o n>
326 </ l a s t o f>
327 </ event query>
328 <event query max age=”5m” name=”down”>
329 < l a s t o f>
330 < i n t e r s e c t i o n>
331 <event name>VRRP:MONITOR:VPN:DOWN</event name>
332 <event type>raw</ event type>
333 <e v e n t s t a t u s>a c t i v e</ e v e n t s t a t u s>
334 <e v e n t a t t r i b u t e name=” host ”>
335 <t r i g g e r f i e l d=” a t t r i b u t e s . host ”/>
336 </ e v e n t a t t r i b u t e>
337 </ i n t e r s e c t i o n>
338 </ l a s t o f>
339 </ event query>
340 </ with in>
341 </ c o n d i t i o n s>
342 <a c t i o n s>
343 <s e l e c t e v e n t s>
344 <event query>
345 <union>
346 <match query>up</ match query>
347 <match query>down</ match query>
348 </ union>
349 </ event query>
350 <a d d r e f e r e n c e s type=” parent ” reason=”happened during i s p outage ”>
351 <event query><match query> i s p</ match query></ event query>
352 </ a d d r e f e r e n c e s>
353 </ s e l e c t e v e n t s>
354 </ a c t i o n s>
355 </ r u l e>
356 </group>
357

358 < !−−
359 Serv i ce dependencies − example: DNS
360

361 => appropr ia t e s t r a t e g y f o r problems desc r i b ed in s e c t i on 2 .3 . 7
362 −−>
363 <group name=”dns−dependenc ies ” order=”130”>
364 <r u l e name=” create−dns−context ” order=”1”>
365 <events>
366 <when event>DNS:PROBLEM</ when event>
367 </ events>
368 <c o n d i t i o n s>
369 <not><context>DNS PROBLEM<t r i g g e r f i e l d=” host ”/></ context></ not>
370 </ c o n d i t i o n s>
371 <a c t i o n s>
372 <c r e a t e c o n t e x t timeout=”1h”>
373 <context name>DNS PROBLEM<t r i g g e r f i e l d=” host ”/></ context name>
374 </ c r e a t e c o n t e x t>
375 <a s s o c i a t e w i t h c o n t e x t>
376 DNS PROBLEM<t r i g g e r f i e l d=” host ”/>
377 </ a s s o c i a t e w i t h c o n t e x t>
378 </ a c t i o n s>
379 </ r u l e>
380 <r u l e name=” de l e t e−dns−context ” order=”2”>
381 <events>
382 <when event>DNS:PROBLEM:STOP</ when event>
383 </ events>
384 <c o n d i t i o n s>
385 <context>DNS PROBLEM<t r i g g e r f i e l d=” host ”/></ context>

B.3. RULES 128

386 </ c o n d i t i o n s>
387 <a c t i o n s>
388 <d e l e t e c o n t e x t>DNS PROBLEM<t r i g g e r f i e l d=” host ”/></ d e l e t e c o n t e x t>
389 </ a c t i o n s>
390 </ r u l e>
391 <r u l e name=” suppress−dependenc ies ” order=”3”>
392 <events>
393 <when c las s>DEPENDENCIES:DNS</ when c las s>
394 </ events>
395 <c o n d i t i o n s>
396 <context>DNS PROBLEM<t r i g g e r f i e l d=” host ”/></ context>
397 </ c o n d i t i o n s>
398 <a c t i o n s>
399 <suppres s reason=” This event was l i k e l y caused by DNS problems . ”>
400 < !−− the query determines the r e f e r e n c e s : −−>
401 <event query>
402 <i n c o n t e x t>DNS PROBLEM<t r i g g e r f i e l d=” host ”/></ i n c o n t e x t>
403 </ event query>
404 </ suppres s>
405 </ a c t i o n s>
406 </ r u l e>
407 </group>
408

409 < !−−
410 a group to handle f a i l o v e r s , which shou ld determine , i f the s i t u a t i o n i s ok
411 again . we assume , there i s the f o l l ow i n g ac t ion p l u g i n :
412

413 e n r i c h f a i l o v e r : a p lug in , which enr i ches the event s i t r e c e i v e s with the
414 hostname of the master (a t t r i b u t e s . master) and s l a v e
415 (a t t r i b u t e s . s l a v e) in the c l u s t e r i t be l ongs to
416 (independent ly o f whether the s p e c i f i c event was sent from
417 master or s l a v e)
418

419 => s o l u t i on fo r the pa t t e rn in s e c t i on 2 .3 . 9
420 −−>
421 <group name=” f a i l o v e r−handl ing ” order=”140”>
422 <r u l e name=” enrichment ” order=”1”>
423 <events>
424 <when event>VRRP:MONITOR:VPN:DOWN</ when event>
425 <when event>VRRP:MONITOR:VPN:UP</ when event>
426 <when event>KEEPALIVED:TRANSITION:SLAVE</ when event>
427 <when event>KEEPALIVED:TRANSITION:MASTER</ when event>
428 </ events>
429 <c o n d i t i o n s>
430 </ c o n d i t i o n s>
431 <a c t i o n s>
432 <a c t i o n p l u g i n name=” e n r i c h f a i l o v e r ”/>
433 </ a c t i o n s>
434 </ r u l e>
435 <r u l e name=”check−i sp−outage ” order=”2”>
436 <events>
437 <when event>VRRP:MONITOR:VPN:DOWN</ when event>
438 </ events>
439 <c o n d i t i o n s>
440 <with in timeframe=”3m”>
441 <event query>
442 < i s t r i g g e r />
443 </ event query>
444 <event query max age=”20m”>
445 <event name>HOST:UNREACHABLE</event name>
446 <event type>raw</ event type>
447 <e v e n t a t t r i b u t e name=” host ”>

B.3. RULES 129

448 <t r i g g e r f i e l d=” a t t r i b u t e s . host ”/>
449 </ e v e n t a t t r i b u t e>
450 </ event query>
451 </ with in>
452 </ c o n d i t i o n s>
453 <a c t i o n s>
454 <mod i f y a t t r i bu t e name=” i sp ou tag e ”>t rue</ mod i f y a t t r i bu t e>
455 </ a c t i o n s>
456 </ r u l e>
457 <r u l e name=” detect−pattern ” order=”3”>
458 <events>
459 <when event>KEEPALIVED:TRANSITION:SLAVE</ when event>
460 <when event>KEEPALIVED:TRANSITION:MASTER</ when event>
461 </ events>
462 <c o n d i t i o n s>
463 <pattern>
464 <alphabet>
465 <symbol l e t t e r=”D”> < !−− master VPN down , during ISP outage −−>
466 <event query name=”D” max age=”10m”>
467 <event name>VRRP:MONITOR:VPN:DOWN</event name>
468 <event hos t><t r i g g e r f i e l d=” a t t r i b u t e s . master ”/></ event hos t>
469 <e v e n t a t t r i b u t e name=” i sp ou ta ge ”>t rue</ e v e n t a t t r i b u t e>
470 </ event query>
471 </symbol>
472 <symbol l e t t e r=”U”> < !−− master VPN up −−>
473 <event query name=”U” max age=”10m”>
474 <event name>VRRP:MONITOR:VPN:UP</event name>
475 <event hos t><t r i g g e r f i e l d=” a t t r i b u t e s . master ”/></ event hos t>
476 </ event query>
477 </symbol>
478 <symbol l e t t e r=”S”> < !−− master t r an s i t i o n to s l a v e −−>
479 <event query name=”S” max age=”10m”>
480 <event name>KEEPALIVED:TRANSITION:SLAVE</event name>
481 <event hos t><t r i g g e r f i e l d=” a t t r i b u t e s . master ”/></ event hos t>
482 </ event query>
483 </symbol>
484 <symbol l e t t e r=”M”> < !−− master t r an s i t i o n to master −−>
485 <event query name=”M” max age=”10m”>
486 <event name>KEEPALIVED:TRANSITION:MASTER</event name>
487 <event hos t><t r i g g e r f i e l d=” a t t r i b u t e s . master ”/></ event hos t>
488 </ event query>
489 </symbol>
490 <symbol l e t t e r=” s ”> < !−− s l a v e t r a n s i t i o n to s l a v e −−>
491 <event query name=” s ” max age=”10m”>
492 <event name>KEEPALIVED:TRANSITION:SLAVE</event name>
493 <event hos t><t r i g g e r f i e l d=” a t t r i b u t e s . s l a v e ”/></ event hos t>
494 </ event query>
495 </symbol>
496 <symbol l e t t e r=”m”> < !−− s l a v e t r a n s i t i o n to master −−>
497 <event query name=”m” max age=”10m”>
498 <event name>KEEPALIVED:TRANSITION:MASTER</event name>
499 <event hos t><t r i g g e r f i e l d=” a t t r i b u t e s . s l a v e ”/></ event hos t>
500 </ event query>
501 </symbol>
502 </ alphabet>
503 < !−−
504 VPN down ; master becomes s l a v e and v i c e versa ;
505 VPN up ; s l a v e becomes master and v i c e versa
506 −−>
507 <regexp>D[Sm]U[Ms]$</ regexp>
508 </ pattern>
509 </ c o n d i t i o n s>

B.3. RULES 130

510 <a c t i o n s>
511 <s e l e c t e v e n t s>
512 <event query>
513 <union>
514 <match query>D</ match query>
515 <match query>U</ match query>
516 <match query>S</ match query>
517 <match query>M</ match query>
518 <match query>s</ match query>
519 <match query>M</ match query>
520 </ union>
521 </ event query>
522 <aggregate>
523 <event>
524 <name>FAILOVER:SUCCESS</name>
525 <d e s c r i p t i o n>
526 There was a s u c c e s s f u l f a i l o v e r . The f o l l o w i n g c o n d i t i o n s are
527 f u l f i l l e d :
528 − VRRP down was during an ISP outage
529 − VRRP i s up again
530 − des ignated master i s master again
531 − des ignated i s s l a v e again
532 − everyth ing happened with in 10 minutes
533 </ d e s c r i p t i o n>
534 </ event>
535 </ aggregate>
536 <modify s t a t u s=” i n a c t i v e ” reason=” S u c c e s s f u l f a i l o v e r . ”/>
537 </ s e l e c t e v e n t s>
538 </ a c t i o n s>
539 </ r u l e>
540 </group>
541

542 < !−−
543 Pattern to d e t e c t a widespread ISP outage :
544 we assume tha t we ge t ISP:HOST:UNREACHABLE event s from cen t r a l monitoring ,
545 which have the a t t r i b u t e s hos t (a f f e c t e d hos t) and i s p (a f f e c t e d ISP)
546

547 => in the same way , l o c a t i on dependent problems as in 2 .3 .10 cou ld be
548 de t e c t ed ; t h i s would r equ i r e a p lug in to enr ich the event s with
549 l o c a t i on informat ion
550 −−>
551 <group name=” isp−problems ” order=”150”
552 d e s c r i p t i o n=” Detect widespread ISP outages . ”>
553 <r u l e name=” enr ich−i sp−l i n k ” order=”1”>
554 <events>
555 <when event>ISP:HOST:UNREACHABLE</ when event>
556 </ events>
557 <c o n d i t i o n s>
558 <count th r e sho ld=”10”>
559 <event query max age=”20m” name=” ISPevents ”>
560 <unique by f i e l d=” a t t r i b u t e s . host ”>
561 < i n t e r s e c t i o n>
562 <event name>ISP:HOST:UNREACHABLE</event name>
563 <e v e n t a t t r i b u t e name=” host ”>
564 <t r i g g e r f i e l d=” a t t r i b u t e s . host ”/>
565 </ e v e n t a t t r i b u t e>
566 </ i n t e r s e c t i o n>
567 </ unique by>
568 </ event query>
569 </ count>
570 </ c o n d i t i o n s>
571 <a c t i o n s>

B.3. RULES 131

572 <s e l e c t e v e n t s>
573 <event query>
574 <match query>ISPevents</ match query>
575 </ event query>
576 <aggregate>
577 <event>
578 <name>ISP:OUTAGE:WIDESPREAD</name>
579 <d e s c r i p t i o n>
580 An outage o f ISP <t r i g g e r f i e l d=” a t t r i b u t e s . i s p ”/>
581 on at l e a s t 10 d i f f e r e n t hos t s was detec ted .
582 </ d e s c r i p t i o n>
583 <a t t r i b u t e name=” i s p ”>
584 <t r i g g e r f i e l d=” a t t r i b u t e s . i s p ”/>
585 </ a t t r i b u t e>
586 </ event>
587 </ aggregate>
588 </ s e l e c t e v e n t s>
589 </ a c t i o n s>
590 </ r u l e>
591 </group>
592 </ r u l e s>
593

594 < !−−
595 vim: sw=2 t s=2
596 −−>

Appendix C

Parameters and Configuration
File Structure

C.1 ace Command Line Parameters

The following listing shows the command line parameters available for ace, as printed by the -h
command line switch:

1 Usage : ace [opt ions]
2

3 Options :
4 −h , −−help show t h i s he lp message and e x i t
5 −c FILE , −−con f i g− f i l e=FILE
6 read c o n f i g u r a t i o n from FILE [d e f a u l t :
7 / e tc / ace / ace . conf i f a v a i l a b l e , bu i l t−in d e f a u l t s
8 otherw i se]
9 −C, −−pr int−con f i g−template

10 pr in t a template f o r the c o n f i g u r a t i o n f i l e
11 −d , −−daemon run as daemon (d e f a u l t : run in foreground)
12 −r RULESOURCE, −−ru le−source=RULESOURCE
13 source o f c o r r e l a t i o n r u l e s (d e f a u l t :
14 f i l e : f i l ename=<ace−dir >/e tc / emptyrules . xml)
15 −R, −−rpc−s e r v e r s t a r t RPC s e r v e r f o r remote c o n t r o l (d e f a u l t : don ’ t
16 s t a r t)
17 −v , −−verbose be verbose about what ’ s going on (can be used mul t ip l e
18 t imes f o r g r e a t e r e f f e c t ; use at l e a s t twice to enable
19 s tack t r a c e s)
20 −p , −−s t a r t−python s t a r t i n t e r a c t i v e Python conso l e f o r debugging
21 (d e f a u l t : don ’ t s t a r t)
22 −i , −−s t a r t−ipython s t a r t i n t e r a c t i v e IPython conso l e f o r debugging
23 (d e f a u l t : don ’ t s t a r t)
24 −P FILE , −−p r o f i l e=FILE
25 run c P r o f i l e f o r speed p r o f i l i n g and s t o r e i t s output
26 i n t o FILE (d e f a u l t : don ’ t run c P r o f i l e)

C.2 ace Configuration File Structure

The following listing shows the structure of a configuration file with default options, as generated
when using the -C command line switch (an explanation of the meaning for each option can be

C.2. ACE CONFIGURATION FILE STRUCTURE 133

found in the documentation of the Config class, in the HTML documentation, which can be
found under doc on the CD-ROM):

1 # ace c o n f i g u r a t i o n f i l e
2

3 [main]
4 python conso le = False # bool
5 r p c s e r v e r p o r t = 1070 # i n t
6 i nput queue max s i ze = 100000 # i n t
7 cache max s i ze = 10000 # i n t
8 t h r e a d s l e e p t i m e = 0 .1 # f l o a t
9 r u l e s d t d = <ace−dir >/e tc / r u l e s . dtd # s t r i n g

10 l o c k f i l e = / var / lock /ace− l o c k f i l e # s t r i n g
11 r e a l t ime = True # bool
12 hostname = l o c a l h o s t # s t r i n g
13 r p c s e r v e r h o s t = l o c a l h o s t # s t r i n g
14 c l a s s l i s t = f i l e : f i l ename=<ace−dir >/e tc / emptyc las se s . xml # s t r i n g
15 smtpserver = l o c a l h o s t # s t r i n g
16 i py thon conso l e = False # bool
17 output queue max s ize = 10000 # i n t
18 events dtd = <ace−dir >/e tc / events . dtd # s t r i n g
19 r u l e s o u r c e = f i l e : f i l ename=<ace−dir >/e tc / emptyrules . xml # s t r i n g
20 daemon = False # bool
21 l o g l e v e l = 3 # i n t
22 r p c s e r v e r = Fal se # bool
23 v e r b o s i t y = 3 # i n t
24 s imu la t i on = False # bool
25 f a s t e x i t = False # bool
26 l o g i d e n t = ace # s t r i n g
27

28 [input]
29 t r a n s l a t o r = l e t t e r # s t r i n g
30 source = f i l e # s t r i n g
31

32 [output]
33 t r a n s l a t o r = l i n e b a s e d # s t r i n g
34 s ink = f i l e # s t r i n g

The configuration may have more than one input and output section. If a translator, source or
sink requires options, they can be given in the form :option=value:option2=value2:.., e.g.:

� translator=linebased:rulefile=input-translation.xml

� source=file:filename=test.csv

� sink=tcp:host=localhost:port=2000

� sink=rpc:port=1070

Appendix D

Assignment

The following pages reflect the task assignment, as provided by Christoph Göldi.

135

Master’s Thesis Assignment

12/12/2008 page 1/5

Master’s Thesis

Event Correlation Engine
for Andreas Müller <andrmuel@ee.ethz.ch>

1 Introduction

1.1 Monitoring large environments
Open Systems AG based in Zurich, Switzerland, is a company specialized in Internet Security since 17
years. As part of the Mission Control Services offering, Open Systems AG operates and monitors over
1500 hosts in 100 countries.

Monitoring large amounts of hosts and world-wide networks requires sophisticated techniques and methods
to pre-process all the gathered events before forwarding them to the Mission Control Center for manual
handling. An appropriate management of events is absolutely necessary to condense the volume of
network, system and application events to smaller and more meaningful sets of alarm messages that can be
handled by the human operator in a timely manner.

1.2 The need for an event correlation engine
Manual handling of monitoring events is time consuming and does not scale well with large environments
consisting of thousands of hosts placed all over the world.

Open Systems has developed several tools to monitor networks, systems and applications. These tools are
able to recognize problems as they appear and to generate alerts in the Mission Control Center. The alerted
events indicate the problem and ease debugging when problems appear.

A single issue often causes bursts of related messages which then have to be manually correlated and
condensed by a human operator which is extremely time consuming.

The goal of this project is to automate this process by designing an event correlation engine which analyses
and processes events in the context of the global system status. Events are delivered to the engine as an
endless stream and have to be correlated in quasi real time.

The event correlation engine should be configurable in a very flexible way. The possibility of adding future
constellations of events and corresponding actions should be easily feasible by an additional configuration
part and without reprogramming the whole engine.

The mentioned event correlation engine should meet the following requirements:

1. Quasi real time processing and consolidation of incoming network, system and application events

2. Fully automatic engine which enables to correlate states and events considering different
additional information sources (amongst events themselves)

3. Configuration language which allows to cover all arising constellations of events and which
supports several different types of alerting and triggering of alarms

4. Scalable and efficient engine with low resource consumption (processor, memory, I/O, database)

136

Master’s Thesis Assignment

12/12/2008 page 2/5

2 The Task
The thesis is conducted at Open Systems AG (http://www.open.ch) in Zurich. The task of this Master’s
Thesis is to develop an event correlation engine especially suited for monitoring large amounts of hosts in
world-wide networks.

The correlation engine has to process all incoming events from every Mission Control host in the world.
The consolidation can be achieved in two steps. In a first step, all events generated by a host can be
correlated before they are sent to the Mission Control Center. At this central point where all events of every
host in the world come together a further correlation in a more global context can be done.

In addition to the events themselves, the correlation engine should consider further information from other
sources like configuration parameters, global network states and setup types. Depending on the correlation
result, events should be summarized, passed to a Mission Control Engineer for manual handling or even
dropped. It also should be possible to trigger commands if certain events occur.

The task of the student is split into five major subtasks that all will be: (i) analysis of potential event
patterns, (ii) study of existing event correlation engine approaches, (iii) specification of an event correlation
engine, (iv) implementation of a prototype, and (v) test of and evaluation with the prototype.

2.1 Analysis of potential event patterns
Andreas should evaluate the event history of previous months to collect all possibly arising event patterns.
Interviewing experienced Mission Control Engineers will give valuable information about common
patterns too and should be considered during this phase of the Thesis.

The found event patterns should be classified and appropriate operations for recognizing and consolidating
these patterns should be proposed. Additionally the student will become familiar with the Open Systems
environment while searching for patterns and studying the different services and possible setups.

2.2 Study of existing event correlation engine approaches
The main focus of Andreas’ thesis lies in finding an appropriate event correlation engine for our specific
environment. Andreas should study existing event correlation approaches to get an idea what approaches
would fit our needs best and to find an own approach which suits all our requirements and fulfils the task
described.

The different approaches should be compared and weighed against each other. The most promising
approach can be used as inspiration for implementing the event correlation engine.

2.3 Specification of an event correlation engine
Based on the study of known event correlation mechanisms Andreas needs to propose a new and improved
method to correlate the events generated by the world-wide distributed Mission Control hosts. He needs to
write a specification, such that the proposed algorithm can be used as a self-contained and automatic
system that allows to consolidate event patterns. Promising algorithms and ideas that have been
encountered in the analysis phase can of course be incorporated.

2.4 Implementation of a prototype
Following the above mentioned specification, a prototype should be implemented on Linux (and run
possibly also on Solaris). The resource consumption and performance of the prototype must be such that
the server can still offer its normal services.

137

Master’s Thesis Assignment

12/12/2008 page 3/5

2.5 Test of and evaluation with the prototype
The prototype must be thoroughly tested under real conditions. Therefore a test should be set up which
simulates event generation.

A first objective of the testing phase is to provide a proof of concept, i.e. show that the algorithm is correct
and that the whole event correlation engine is usable. Besides, and more importantly, the prototype
provides the foundation for evaluating the whole thesis. Andreas therefore needs to define evaluation
criteria and a methodology how these criteria can be verified with the prototype.

The results of the evaluation will possibly, and most probably, trigger a refinement of certain concepts, and
improve the implementation. The evaluation will definitely allow issuing recommendations for future work
on that topic, and what are steps to consider for an implementation beyond a prototype.

3 Deliverables
The following results are expected:

1. Analysis of all possible event patterns. The event patterns found should be classified and summarized
in a list and possible methods to detect and correlate them should be proposed.

2. Survey of existing event correlation approaches. A short but precise survey should be written that
studies and analyses the different known mechanisms to correlate network, system and application
events.

3. Definition of own approach to the problem. In this creative phase the student should find and
document an appropriate approach to the problem which meets the requirements above and is able to
correlate the event patterns found in step 1.

4. Implementation of a prototype The specified prototype should be implemented.

5. Testing of the prototype Tests of the prototype with simulated event probes should be made in order to
validate the functionality. The efficiency of the prototype has to be measured.

6. Documentation A concise description of the work conducted in this thesis (task, related work,
environment, code functionality, results and outlook). The survey as well as the description of the
prototype and the testing results is part of this main documentation. The abstract of the document-
tation has to be written in both English and German. The original task description is to be put in the
appendix of the documentation. One sample of the documentation needs to be delivered at TIK. The
whole documentation, as well as the source code, slides of the talk etc., needs to be archived in a
printable, respectively executable version on a CDROM, which is to be attached to the printed
documentation.

Further optional components are:

• Paper that summarizes in ten pages the task and results of this thesis.

3.1 Documentation and presentation
A documentation that states the steps conducted, lessons learnt, major results and an outlook on future
work and unsolved problems has to be written. The code should be documented well enough such that it
can be extended by another developer within reasonable time. At the end of the thesis, a presentation will
have to be given at TIK that states the core tasks and results of this thesis. If important new research results
are found, a paper might be written as an extract of the thesis and submitted to a computer network and
security conference.

The developed code of the prototype and the implemented algorithms will be released under the terms of
GPL2 as open source at the end of the thesis.

138

Master’s Thesis Assignment

12/12/2008 page 4/5

3.2 Dates
This Master’s thesis starts on March 2nd 2009 and is finished on August 28th 2008. It lasts 26 weeks in total.

At the end of the second week Andreas has to provide a schedule for the thesis. It will be discussed with the
supervisors.

After a month Andreas should provide a draft of the table of contents (ToC) of the thesis. The ToC suggests
that the documentation is written in parallel to the progress of the work.

Two intermediate informal presentations for Prof. Plattner and supervisors will be scheduled 2 months and
4 months into this thesis.

A final presentation at TIK will be scheduled close to the completion date of the thesis. The presentation
consists of a 20 minutes talk and reserves 5 minutes for questions.

Informal meetings with the supervisors will be announced and organized on demand.

139

Master’s Thesis Assignment

12/12/2008 page 5/5

4 Supervisors
Christoph Göldi, chg@open.ch, +41 44 455 74 00, Open Systems AG, http://www.open.ch
Stefan Lampart, stl@open.ch, +41 44 455 74 00, Open Systems AG, http://www.open.ch
Bernhard Tellenbach, betellen@tik.ee.ethz.ch, +41 44 632 70 06, ETZ G 97, ETH Zurich

5 References
[1] WindowsSecurity.com; Event Log Monitoring, Software Listing

http://www.windowsecurity.com/software/Event-Log-Monitoring/

[2] SEC - simple event correlator; open source and platform independent event correlation tool
http://kodu.neti.ee/~risto/sec/

[3] Working with SEC - the Simple Event Correlator
http://sixshooter.v6.thrupoint.net/SEC-examples/article.html

[4] Related Links for Event Correlation by The Munich Network Management Team
http://www.mnm-team.org/projects/evcorr/

[5] HP Event Correlation Services
http://h20229.www2.hp.com/products/ecs/

[6] MATERNA Event Correlation Engine für HiPath FM
http://www.materna.com/nn_133938/DE/Nav/L_C3_B6sungen/BU/BUI/InfraMan/SysMan/HiPath/E
vCorrEng/EvCorrEng__n,naviExpand=.html__nnn=true

[7] Simple Event Correlation installation and configuration, Linux Article
http://searchenterpriselinux.techtarget.com/tip/0,289483,sid39_gci1231688,00.html

[8] Event Stream Intelligence with Esper and NEsper
http://esper.codehaus.org

Appendix E

Schedule

Figure E.1 reflects the initial version of the project schedule for this master’s thesis.

141

Date W
e

e
k

Reading Development DocumentationPresentation Milestones

Mar 2, 2009 1

Mar 9, 2009 2

Mar 16, 2009 3

Mar 23, 2009 4

Mar 30, 2009 5

Apr 6, 2009 6

Apr 13, 2009 7

Apr 20, 2009 8

Apr 27, 2009 9

May 4, 2009 10

May 11, 2009 11

May 18, 2009 12

DoxygenMay 25, 2009 13

Jun 1, 2009 14

Jun 8, 2009 15

Jun 15, 2009 16

Jun 22, 2009 17 CE test setup Test setup

Jun 29, 2009 18
CE testing

Jul 6, 2009 19 CE evaluation

Jul 13, 2009 20

Jul 20, 2009 21 Refinements

Jul 27, 2009 22 CE testing Test results

Aug 3, 2009 23 Odds & Ends Conclusions

Aug 10, 2009 24 Odds & Ends

Aug 17, 2009 25

Aug 24, 2009 26

Analysis,
Evaluation

Existing
approaches

MC Tickets,
Syslog dumpStatistics, log

analysis Log analysis
tools

Event
patterns,
analysis
methods

Existing
approaches

Interview MC
engineers;
Syslog

Table of
Contents

Existing EC
approachesEvaluate

existing CE's

Specification
of own CE Intermediate

Presentation

CE coding
environment

Own CE
specified

Correlation
Engine

High level CE
architecture

Code
overview

Intermediate
Presentation

Own CE
implemented

Event
simulation

Correlation
Engine –
Refinements Code feature

stop

Layout,
Cleanup,
Printing, CD

Final
Presentation

Thesis
finished

Figure E.1: Initial project schedule.

Appendix F

Presentation

The following pages show the presentation slides, which were used for the final presentation of
this master’s thesis.

Event Correlation Engine
Master’s Thesis – Final Presentation

Andreas Müller

Tutors:
Christoph Göldi, Bernhard Tellenbach

Supervisor:
Prof. B. Plattner

Institut für
Technische Informatik und
Kommunikationsnetze

143

1 Introduction

2 Motivation and Task

3 Approach

4 Conclusions

5 Demo

Introduction Motivation and Task Approach Conclusions Demo Questions

1 Introduction
Event Correlation

2 Motivation and Task

3 Approach

4 Conclusions

5 Demo

144

Introduction Motivation and Task Approach Conclusions Demo Questions

Event Correlation

Event Correlation
Event

Any occurrence; anything, which happened
Computing: message, what happened when

Correlation: analysis of co-relations
Goal: gain higher-level knowledge
Applications

Market data analysis
Algorithmic trading
Fraud detection
System log analysis
Network management

Event Correlation Engine (ECE)

Application or toolkit to correlate events

Introduction Motivation and Task Approach Conclusions Demo Questions

1 Introduction

2 Motivation and Task
Background
Motivation and Task

3 Approach

4 Conclusions

5 Demo

145

Introduction Motivation and Task Approach Conclusions Demo Questions

Background

Background

Master’s thesis at Open Systems AG
Open Systems provides managed security for customers around
the world, operating a global network with more than 1500 hosts

Setup

Hosts generate events from syslog messages and network
observations, e.g.:

Network link down
CPU load high

Events end up in tickets, which are handled manually

Introduction Motivation and Task Approach Conclusions Demo Questions

Motivation and Task

Problems
Handling all events manually is time consuming and
cumbersome
Simple problems create too many events, important events may
be overlooked
Same problem has to be handled again and again

How to mitigate these problems?

⇒ Intelligently pre-process the events with an ECE

Task
Choose or design, implement and evaluate an ECE suitable to
extend the ticketing system of Open Systems

146

Introduction Motivation and Task Approach Conclusions Demo Questions

1 Introduction

2 Motivation and Task

3 Approach
Event Pattern Analysis
Analysis of Existing Approaches
Specification and Implementation
Testing and Evaluation

4 Conclusions

5 Demo

Introduction Motivation and Task Approach Conclusions Demo Questions

Event Pattern Analysis

Pattern Analysis: Goals

Qualitative and quantitative overview of events
Identification of frequent patterns

Statistical analysis

E.g. event rate:
Average: 1-2 events per minute
Peaks: Up to 900 events per minute

Pattern identification
E.g. temporal correlation (next slide)

147

Introduction Motivation and Task Approach Conclusions Demo Questions

Event Pattern Analysis: Temporal Correlation

Introduction Motivation and Task Approach Conclusions Demo Questions

Analysis of Existing Approaches

Correlation Approach

Decisions of the correlation engine should be reproducible and
understandable for humans
⇒ Rule-based approach most suitable

Finite-state machine would be suitable for some patterns
⇒ Allow regular expressions on events

Existing Software

No suitable software found
Many concepts can be reused, e.g.:

Dynamic contexts
Combination of simple building blocks into powerful rules

148

Introduction Motivation and Task Approach Conclusions Demo Questions

Specification

Requirements and design decisions

Rule language should be easy to learn
⇒ XML based rules

Local and global correlation should be possible
⇒ Tree of homogeneous correlation nodes

Implementation

Functional programming to build rule functions from simple
components
Rapid prototyping was valued higher than execution speed
⇒ Implemented in Python

Introduction Motivation and Task Approach Conclusions Demo Questions

Implementation: Node Tree

Tree of correlation nodes

Event sources

Root node,
Global
correlation

Preprocessing,
Local correlation

Logging

Ticketing

Alert ing

Rule repository

Event sinks

149

Introduction Motivation and Task Approach Conclusions Demo Questions

Implementation: Functional Overview

Input
queue

Output
queue

 Sources &
Translators

Condition
& Action
plugins

Local rule
repository

Event
cache

Output
eventsInput

events
Translator
& Sink

Core

Event and
Information f low

Introduction Motivation and Task Approach Conclusions Demo Questions

Testing and Evaluation

Testing and evaluation methods

Profiling
Unit tests
Sanity checks
Evaluation with random events
Evaluation with replayed real events

150

Introduction Motivation and Task Approach Conclusions Demo Questions

1 Introduction

2 Motivation and Task

3 Approach

4 Conclusions
Conclusions
Outlook

5 Demo

Introduction Motivation and Task Approach Conclusions Demo Questions

Conclusions

Strengths

Functional programming allows to build rule functions at startup
⇒ No need for (slow and hard to debug) eval() during operation

Regular expressions to match patterns suitable for FSMs
⇒ As powerful as FSMs, but better known and easier to use

Cache automatically decides how long to keep an event

Aptitude for real-world events

Events of one month can be processed in < 10 minutes
⇒ Real-time operation no problem

Simple compression can reduce the event volume by > 50%

Successful detection of complex patterns
⇒ E.g. detection of successful failover transition with regexp

151

Introduction Motivation and Task Approach Conclusions Demo Questions

Outlook

Future development

Support for rule creation (e.g. pattern mining, GUI tools)
Central rule database with target scopes for each rule group
⇒ “Rule applies to all hosts in country X”

Reducing complexity

Introduction Motivation and Task Approach Conclusions Demo Questions

1 Introduction

2 Motivation and Task

3 Approach

4 Conclusions

5 Demo
Example Problem
Correlation Approach

152

Introduction Motivation and Task Approach Conclusions Demo Questions

Demo: Example Problem

Example: Irrelevant IP theft events

Standby firewall becomes master, while primary firewall is still up
Firewalls detect second host with same IP address
⇒ Events indicating IP address theft

Duplicate master is also detected
Corresponding event often generated after IP theft event

It is sufficient to solve the root problem (duplicate master)
⇒ IP address theft events are of no interest

Introduction Motivation and Task Approach Conclusions Demo Questions

Demo: Correlation Approach

Correlation behaviour
Event indicating a duplicate master
⇒ Represent this knowledge as context
⇒ Suppress IP theft events from same host during last minute

As long as context exists, suppress further IP theft events
Event indicating duplicate master is gone
⇒ Remove context

Demo
Real events with anonymized host names
One correlation node

First run: without correlation rules
Second run: rules with behaviour explained above

153

Introduction Motivation and Task Approach Conclusions Demo Questions

Questions?

Thank you for your attention.

Appendix G

Acronyms

The following list provides an overview of the acronyms used throughout this thesis.

AD Active Directory

AI Artificial Intelligence

AL Apache License

AL Apache License

ANN Artificial Neural Network

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BRMS Business Rule Management System

BSD Berkeley Software Distribution

CBR Case-based Reasoning

CEP Complex Event Processing

CFG Context Free Grammar

CLI Command Line Interface

CPU Central Processing Unit

CSP Constraint Satisfaction Problem

CSV Comma Separated Values

DDoS Distributed Denial of Service

DNS Domain Name Service

DRL Drools Rule Language

DSL Domain Specific Language

155

DTD Document Type Definition

DoS Denial of Service

ECA Event Condition Action

ECDL Event Correlation Description Language

ECE Event Correlation Engine

ECS Event Correlation Services

EOF End of File

EPL Event Processing Language

EQL Event Query Language

ESP Event Stream Processing

FAQ Frequently Asked Question

FIFO First In, First Out

FSM Finite State Machine

FST Finite State Transducer

GASSATA Genetic Algorithm for Simplified Security Audit Trail Analysis

GNU GNU’s Not Unix

GPL General Public License

GUI Graphical User Interface

HIDS Host-based Intrusion Detection System

HTML Hypertext Markup Language

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System

IPC Interprocess Communication

IPS Intrusion Prevention System

IP Internet Protocol

ISP Internet Service Provider

JMX Java Management Extensions

156

JVM Java Virtual Machine

LGPL Lesser General Public License

LML Log Monitoring Lackey

MBR Model-based Reasoning

NIC Network Interface Controller

NNM Network Node Manager

NP Nondeterministic Polynomial

OSI Open Systems Interconnection

OS Operating System

PAM Pluggable Authentication Modules

PDF Portable Document Format

PEP Python Enhancement Proposal

PHP PHP: Hypertext Preprocessor

POJO Plain Old Java Object

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RBR Rule-based Reasoning

RFC Request For Comment

RPC Remote Procedure Call

SEC Simple Event Correlator

SEM Security Event Management

SIEM Security Information and Event Management

SIM Security Information Management

SLA Service Level Agreement

SMART Support Management Automated Reasoning Technology

SMS Short Message Service

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSHd Secure Shell daemon

SSH Secure Shell

157

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TEC Tivoli Enterprise Console

TLS Transport Layer Security

TMF Tivoli Management Framework

UDP User Datagram Protocol

UI User Interface

UTC Coordinated Universal Time

VCS Version Control System

VLSI Very Large Scale Integration

VPN Virtual Private Network

VRRP Virtual Router Redundancy Protocol

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

XPath XML Path

Appendix H

CD-ROM Content Listing

This master thesis is accompanied by a CD-ROM, which has the following content:

/

task ...Task description

thesis ...This master thesis as PDF file

presentation ..Presentation slides as PDF file

code ..The developed Python code

log analysis ...Tools used for log analysis

evaluationPython scripts used for evaluation

docAutomatically generated HTML code documentation

dtd ...XML document type definitions

xml-examplesExamples of XML rules and events

evaluation-rulesXML rules used for simulation

demoRules, script and configuration used for the demo

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications, 7(1):39–59, March 1994. Available

at http://www.iiia.csic.es/People/enric/AICom.html.

[2] Timothy L. Acorn and Sherry H. Walden. Smart: Support management automated reason-

ing technology for compaq customer service. In IAAI-92 Proceedings, 1992.

[3] E. Todd Atkins. Swatch manual page. Accessible with man 1 swatch, on a host where

Swatch is installed.

[4] Irad Ben-gal. Bayesian networks, 2007. Available at http://www.eng.tau.ac.il/~bengal/

BN.pdf.

[5] Thomas Bernhardt and Alexandre Vasseur. Esper: Event stream processing and correla-

tion. ONJava, 2007. Available at http://www.onjava.com/pub/a/onjava/2007/03/07/

esper-event-stream-processing-and-correlation.html.

[6] Hans Beyer. Service-oriented event correlation. Master’s thesis, Technical University Mu-

nich, 2007.

[7] Nikolai Bezroukov. Event correlation technologies. Available at http://www.

softpanorama.org/Admin/Event_correlation/.

[8] Nikolai Bezroukov. Tivoli enterprise console. Available at http://www.softpanorama.org/

Admin/Tivoli/TEC/.

[9] A. Bouloutas, G.W. Hart, and M. Schwartz. Simple finite-state fault detectors for commu-

nication networks. Communications, IEEE Transactions on, 40(3):477–479, Mar 1992.

http://www.iiia.csic.es/People/enric/AICom.html
http://www.eng.tau.ac.il/~bengal/BN.pdf
http://www.eng.tau.ac.il/~bengal/BN.pdf
http://www.onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-correlation.html
http://www.onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-correlation.html
http://www.softpanorama.org/Admin/Event_correlation/
http://www.softpanorama.org/Admin/Event_correlation/
http://www.softpanorama.org/Admin/Tivoli/TEC/
http://www.softpanorama.org/Admin/Tivoli/TEC/

BIBLIOGRAPHY 160

[10] A.T. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault identification in com-

munication networks. Communications, IEEE Transactions on, 42(234):523–533, Feb/-

Mar/Apr 1994.

[11] Daniel B. Cid. Log analysis using ossec, 2007. Available at http://ossec.net/ossec-docs/

auscert-2007-dcid.pdf.

[12] Drools community. Drools website. Accessible at http://www.jboss.org/drools/.

[13] OSSEC community. Ossec source code. Version 2.0, available at http://www.ossec.net/

files/ossec-hids-2.0.tar.gz.

[14] OSSEC community. Ossec website. Accessible at http://ossec.net.

[15] OSSIM community. Ossim documentation. Accessible at http://www.ossim.net/

dokuwiki/doku.php.

[16] OSSIM community. Ossim website. Accessible at http://www.ossim.org.

[17] OSSIM community. Ossim source code, 2008. Version 0.9.9, available at http://

sourceforge.net/projects/os-sim/.

[18] Prelude community. Prelude correlator source code. Version 0.9.0-beta3, available at http:

//www.prelude-ids.com/en/development/download/.

[19] Prelude community. Prelude documentation. Acessible at https://dev.prelude-ids.

com/.

[20] Gregory F. Cooper. The computational complexity of probabilistic inference using bayesian

belief networks. Artificial Intelligence, 42(2-3):393 – 405, 1990.

[21] Daniel D. Corkill. Collaborating software: Blackboard and multi-agent systems & the

future. In Proceedings of the International Lisp Conference, 2003. Available at http:

//dancorkill.home.comcast.net/~dancorkill/pubs/ilc03.pdf.

[22] Robert N. Cronk, Paul H. Callahan, and Lawrence Bernstein. Rule based expert systems

for network management and operations: An introduction, 1988.

http://ossec.net/ossec-docs/auscert-2007-dcid.pdf
http://ossec.net/ossec-docs/auscert-2007-dcid.pdf
http://www.jboss.org/drools/
http://www.ossec.net/files/ossec-hids-2.0.tar.gz
http://www.ossec.net/files/ossec-hids-2.0.tar.gz
http://ossec.net
http://www.ossim.net/dokuwiki/doku.php
http://www.ossim.net/dokuwiki/doku.php
http://www.ossim.org
http://sourceforge.net/projects/os-sim/
http://sourceforge.net/projects/os-sim/
http://www.prelude-ids.com/en/development/download/
http://www.prelude-ids.com/en/development/download/
https://dev.prelude-ids.com/
https://dev.prelude-ids.com/
http://dancorkill.home.comcast.net/~dancorkill/pubs/ilc03.pdf
http://dancorkill.home.comcast.net/~dancorkill/pubs/ilc03.pdf

BIBLIOGRAPHY 161

[23] Randall Davis, Howard Shrobe, Walter Hamscher, Kären Wieckert, Mark Shirley, and Steve

Polit. Diagnosis based on description of structure and function. In National Conference on

Artificial Intelligence, pages 137–142. American Association for Artificial Intelligence, 1982.

[24] H. Debar, D. Curry, and B. Feinstein. Rfc 4765: The intrusion detection message exchange

format (idmef), March 2007. Available at http://www.ietf.org/rfc/rfc4765.txt.

[25] LXML Developers. Lxml api documentation, 2009. Available at http://codespeak.net/

lxml/api/index.html.

[26] Robert B. Doorenbos. Production Matching for Large Learning Systems. PhD thesis,

Carnegie Mellon University, 1995. Available at http://reports-archive.adm.cs.cmu.

edu/anon/1995/CMU-CS-95-113.pdf.

[27] Xiaojiang Du, M.A. Shayman, and R.A. Skoog. Using neural network in distributed man-

agement to identify control and management plane poison messages. In Military Commu-

nications Conference, 2003. MILCOM 2003. IEEE, volume 1, pages 458–463, Oct. 2003.

[28] EsperTech. Esper website. Available at http://esper.codehaus.org.

[29] Python Software Foundation. Python glossary, 2009. Available at http://docs.python.

org/glossary.html.

[30] Python Software Foundation. The python standard library, 2009. Available at http://

docs.python.org/library/.

[31] Python Software Foundation. The python standard library – a synchronized queue class,

2009. Available at http://docs.python.org/library/queue.html.

[32] Python Software Foundation. The python standard library – regular expression operations,

2009. Available at http://docs.python.org/library/re.html.

[33] Python Software Foundation. The python standard library – time access and conversions,

2009. Available at http://docs.python.org/library/time.html.

[34] OpenNMS Group and The Order of the Green Polo. Opennms website. Accessible at

http://www.opennms.org.

http://www.ietf.org/rfc/rfc4765.txt
http://codespeak.net/lxml/api/index.html
http://codespeak.net/lxml/api/index.html
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://esper.codehaus.org
http://docs.python.org/glossary.html
http://docs.python.org/glossary.html
http://docs.python.org/library/
http://docs.python.org/library/
http://docs.python.org/library/queue.html
http://docs.python.org/library/re.html
http://docs.python.org/library/time.html
http://www.opennms.org

BIBLIOGRAPHY 162

[35] Boris Gruschke. Integrated event management: Event correlation using dependency graphs.

In 9th IFIP/IEEE International Workshop on Distributed Systems: Operations & Manage-

ment (DSOM 98), 1998. Available at http://www.mnm-team.org/~gruschke/.

[36] Andreas Hanemann. A hybrid rule-based/case-based reasoning approach for service fault

diagnosis. In Advanced Information Networking and Applications, 2006. AINA 2006. 20th

International Conference on, volume 2, page 5 pp., April 2006.

[37] Andreas Hanemann and Martin Sailer. A framework for service quality assurance using

event correlation techniques. In Telecommunications, 2005. Advanced Industrial Confer-

ence on Telecommunications/Service Assurance with Partial and Intermittent Resources

Conference/ E-Learning on Telecommunications Workshop. AICT/SAPIR/ELETE 2005.

Proceedings, pages 428–433, July 2005.

[38] Stephen E. Hansen and E. Todd Atkins. Automated system monitoring and notification

with swatch. In USENIX, 1993. Available at http://www.usenix.org/publications/

library/proceedings/lisa93/full_papers/hansen.ps.

[39] HP. hp openview event correlation services (ecs) for network node manager and operations.

Available at http://www.openview.hp.com/products/ecs/ds/ecs_ds.pdf.

[40] Nick Hutton. Preparing for security event management. 360◦ Inforamtion Secu-

rity Magazine, 2007. Available at http://www.windowsecurity.com/whitepapers/

Preparing-Security-Event-Management.html.

[41] IBM. Ibm tec and netview product manuals. Available at http://publib.boulder.ibm.

com/infocenter/tivihelp/v3r1/.

[42] G. Jakobson and M. Weissman. Alarm correlation. Network, IEEE, 7(6):52–59, Nov 1993.

[43] Gabriel Jakobson, John Buford, and Lundy Lewis. Towards an architecture for reasoning

about complex event-based dynamic situations. In International Workshop on Distributed

Event-based Systems (DEBS 2004), 2004.

[44] Eamonn Kent. Distributed fault location. Master’s thesis, University of Western Ontario,

1998.

http://www.mnm-team.org/~gruschke/
http://www.usenix.org/publications/library/proceedings/lisa93/full_papers/hansen.ps
http://www.usenix.org/publications/library/proceedings/lisa93/full_papers/hansen.ps
http://www.openview.hp.com/products/ecs/ds/ecs_ds.pdf
http://www.windowsecurity.com/whitepapers/Preparing-Security-Event-Management.html
http://www.windowsecurity.com/whitepapers/Preparing-Security-Event-Management.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/

BIBLIOGRAPHY 163

[45] A.A. Lazar, Weiguo Wang, and R.H. Deng. Models and algorithms for network fault detec-

tion and identification: a review. In Singapore ICCS/ISITA ’92. ’Communications on the

Move’, pages 999–1003 vol.3, Nov 1992.

[46] David B. Leake. Cbr in context: The present and future, 1996.

[47] L. Lewis. A case-based reasoning approach to the management of faults in communication

networks. In INFOCOM ’93. Proceedings.Twelfth Annual Joint Conference of the IEEE

Computer and Communications Societies. Networking: Foundation for the Future. IEEE,

pages 1422–1429 vol.3, 1993.

[48] R. Lippmann. An introduction to computing with neural nets. ASSP Magazine, IEEE,

4(2):4–22, Apr 1987.

[49] C. Lonvick. Rfc 3164: The bsd syslog protocol, August 2001. Available at http://www.

ietf.org/rfc/rfc3164.txt.

[50] David Luckham and Roy Schulte. Event processing glossary, July 2008. Version 1.1. Avail-

able at http://complexevents.com/?p=409.

[51] Jean Philippe Martin-Flatin, Gabriel Jakobson, and Lundy Lewis. Event correlation in

integrated management: Lessons learned and outlook. J. Netw. Syst. Manage., 15(4):481–

502, December 2007.

[52] Dilmar Malheiros Meira. A Model For Alarm Correlation in Telecommunications Networks.

PhD thesis, Federal University of Minas Gerais, 1997.

[53] Ludovic Mé. Gassata – a genetic algorithm as an alternative tool for security audit trail

analysis, 2000.

[54] Ricardo Olivieri. Implement business logic with the drools rules engine. IBM devel-

operWorks, 2006. Available at http://www.ibm.com/developerworks/java/library/

j-drools/.

[55] Fabien Pouget and Marc Dacier. Alert correlation: Review of the state of the art. Technical

Report EURECOM+1271, Institut Eurecom, France, Dec 2003.

http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc3164.txt
http://complexevents.com/?p=409
http://www.ibm.com/developerworks/java/library/j-drools/
http://www.ibm.com/developerworks/java/library/j-drools/

BIBLIOGRAPHY 164

[56] Mihaela Sabin, Robert D. Russell, and Eugene C. Freuder. Generating diagnostic tools for

network fault management. In Fifth IFIP/IEEE International Symposium on Integrated

Network Management (IM’97), pages 700–711. Chapman & Hall, 1997.

[57] Kenneth R. Sheers. Hp openview event correlation services. HP Journal, October 1996.

Available at http://www.hpl.hp.com/hpjournal/96oct/oct96a4.htm.

[58] Stephen Slade. Case-based reasoning: A research paradigm. AI Magazine, 12(1):42–55,

1991.

[59] M. Steinder and A. Sethi. A survey of fault localization techniques in computer networks,

2004. Available at http://www.cis.udel.edu/~sethi/papers/04/socp04.pdf.

[60] Daniel Stutzbach. Blist: A faster list-like type, 2007. Available at http://www.python.

org/dev/peps/pep-3128/.

[61] PreludeIDS Technologies. Prelude website. Acessible at http://www.prelude-ids.com.

[62] Kerry Thompson. An introduction to logsurfer. SysAdmin magazine, 2004. Available at

http://www.crypt.gen.nz/papers/logsurfer.html.

[63] Risto Vaarandi. Simple event correlator faq. Available at http://simple-evcorr.

sourceforge.net/FAQ.html.

[64] Risto Vaarandi. Sec – a lightweight event correlation tool. In Proceedings of the 2002 IEEE

Workshop on IP Operations and Management, 2002. Available at http://kodu.neti.ee/

~risto/publications/sec-ipom02-web.pdf.

[65] Risto Vaarandi. Tools and Techniques for Event Log Analysis. PhD thesis, Tallinn University

of Technology, 2005. Available at http://kodu.neti.ee/~risto/publ.html.

[66] Risto Vaarandi. SEC manual page, 2008. Accessible with man 1 sec, on a host where SEC

is installed.

[67] Risto Vaarandi et al. Sec rule repository. Available at http://kodu.neti.ee/~risto/sec/

rulesets/.

http://www.hpl.hp.com/hpjournal/96oct/oct96a4.htm
http://www.cis.udel.edu/~sethi/papers/04/socp04.pdf
http://www.python.org/dev/peps/pep-3128/
http://www.python.org/dev/peps/pep-3128/
http://www.prelude-ids.com
http://www.crypt.gen.nz/papers/logsurfer.html
http://simple-evcorr.sourceforge.net/FAQ.html
http://simple-evcorr.sourceforge.net/FAQ.html
http://kodu.neti.ee/~risto/publications/sec-ipom02-web.pdf
http://kodu.neti.ee/~risto/publications/sec-ipom02-web.pdf
http://kodu.neti.ee/~risto/publ.html
http://kodu.neti.ee/~risto/sec/rulesets/
http://kodu.neti.ee/~risto/sec/rulesets/

BIBLIOGRAPHY 165

[68] Guido van Rossum. Python enhancement proposal 3000, 2009. Available at http://www.

python.org/dev/peps/pep-3000/.

[69] Hermann Wietgrefe, Klaus dieter Tuchs, Klaus Jobmann, Guido Carls, Peter Fröhlich, Wolf-

gang Nejdl, and Sebastian Steinfeld. Using neural networks for alarm correlation in cellular

phone networks. In Proc. International Workshop on Applications of Neural Networks in

Telecommunications, 1997.

[70] Wikipedia. Birthday problem, 2009. [Online; accessed 12-June-2009].

[71] Wikipedia. Eval — wikipedia, the free encyclopedia, 2009. [Online; accessed 17-August-

2009].

[72] Wikipedia. Event correlation — wikipedia, the free encyclopedia, 2009. [Online; accessed

27-April-2009].

[73] S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust event

correlation. Communications Magazine, IEEE, 34(5):82–90, May 1996.

http://www.python.org/dev/peps/pep-3000/
http://www.python.org/dev/peps/pep-3000/

	Introduction
	Background
	Problem Statement and Setup
	Task Description
	Introduction to Event Correlation
	Terminology
	False Positive and False Negative
	Event Correlation Terminology
	CEP and ESP
	SIM
	Acronyms

	Typography
	Host Names

	Event Pattern Analysis
	Statistics
	Database Dump Format and Event Type Names
	Most Frequent Event Types and Most Active Hosts
	A Graphical Look at the Events and Event Bursts

	A First Look at Correlation
	The Naive Correlation Approach
	Per-Host Correlation Across Event Types
	Correlation Across Event Types and Hosts
	Comparison to Another Month

	Identification and Classification of Event Patterns
	Preliminary Remarks
	Multiple Identical Events for a Persistent Problem
	Old Events
	Late Events for Closed Tickets
	Irrelevant Unique Events
	Flickering Services
	Dependencies Between Services on a Host
	Events Caused by Problems on Another Host
	Mutual Dependencies Between Hosts
	Location Dependent Relations
	Gathering of Additional Information
	Correlation with Information from External Sources
	Summary

	Survey of Existing Event Correlation Approaches
	Properties of Event Correlation Engines
	Domain Awareness
	Self-Learning vs. External Knowledge
	Real-time vs. Stored Data
	Stateless vs. Stateful
	Purely Passive vs. Active
	Centralized vs. Distributed
	Default Policy
	Loss of Information
	Transparency
	Robustness
	Maintainability
	Deep vs. Surface Knowledge

	Event Correlation Operations
	Compression
	Logical Operations
	Aggregation
	Filtering (Stateless Filtering)
	Suppression (Stateful Filtering)
	Thresholding
	Rate Limiting
	Escalation
	Temporal Relationship
	Generalization
	Specialization
	Clustering

	Event Correlation Techniques
	Finite State Machine Based
	Rule Based Event Correlation
	Case Based Reasoning
	Model Based Reasoning
	Codebook Based Event Correlation
	Voting Approaches
	Explicit Fault-localization
	Dependency Graphs
	Bayesian Network Based Event Correlation
	Neural Network Approaches
	Even More Approaches
	Hybrid Approaches
	Summary

	Existing Open Source Event Correlation Software
	Swatch
	LogSurfer
	SEC
	OSSEC
	OpenNMS
	Prelude
	OSSIM
	Drools
	Esper
	Many Other Applications

	Commercial Event Correlation Products
	IBM Tivoli Enterprise Console
	HP Event Correlation Services
	Many Other Applications

	Comparison of Existing Event Correlation Software

	Specification
	Requirements and Assumptions
	A Case for a Rule Based Correlation Engine

	High-level Function Model
	Event Format
	Events Generated by the Correlation Engine Itself
	Input Translation
	Line-based Input Rule Format

	Concepts
	Contexts
	Time
	Event Caching

	Rule Format
	Rule Groups
	Format of Individual Rules
	Rule Scoping
	Formal Specification

	Implementation
	Preliminary Notes
	Additional Documentation
	Programming Language
	Dependencies
	Privileges
	Document Type Definitions
	Installation

	Top Level Packages
	The Package ace
	The Script ace
	The util Package
	The tests Package
	Master
	The RPC Server
	Events
	Queues
	Ticker
	Sources and Sinks
	Translators
	Plugins
	Core
	Cache
	Context Manager
	Rule Manager

	Evaluation and Refinements
	Functional Verification
	Unit Tests
	Event Balance

	Profiling
	Evaluation with Random Events
	Rule Execution Time
	Evaluation of the Cache

	Evaluation with Real-world Events
	Compression
	Changing Bursts to Start/End Signaling
	Aggregation of Old Events
	Irrelevant Unique Events
	Flickering Detection
	Suppression of Dependent Events
	Complex Patterns
	Speed Considerations
	Real-time Testing
	Conclusions

	Conclusions and Outlook
	Conclusions
	Outlook and Future Developments
	Rule Generation
	Central Rule Repository
	Automatic Rule Destination Selection

	Notes on Measuring Event Rates
	Sliding Window
	Memory Usage

	Fixed Window
	Memory Usage
	Comparison to the Sliding Window

	Fixed Window with Dynamic Start
	Memory Usage
	Comparison to the Sliding Window

	Stepping Window
	Memory usage
	Comparison to the Sliding Window

	Overlapping Stepping Windows
	Event Distance
	Memory usage
	Comparison to the Sliding Window

	Dynamic Window
	Memory Usage
	Comparison to the Sliding Window

	Summary

	XML Document Type Definitions and Examples
	Events
	Document Type Definition
	Examples

	Line-based Input Translation
	Document Type Definition
	Examples

	Rules
	Document Type Definition
	Examples

	Parameters and Configuration File Structure
	ace Command Line Parameters
	ace Configuration File Structure

	Assignment
	Schedule
	Presentation
	Acronyms
	CD-ROM Content Listing
	Bibliography

