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Task

Goal: Implementation of a real-time DAB receiver as SDR

SDR

Software Defined Radio — (almost) all signal
processing in software

.

DAB

Digital Audio Broadcasting — digital radio
technology standardized by ETSI

Real-time

Process data as fast as it arrives — 2 MSPS or 16
MB/s
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Software Defined Radio

Digitize the signal and do all the signal processing in (high level,
architecture independent) software.

Strengths

@ Flexibility
@ Reusable code, fast development cycle

@ Cognitive radio: Adapts itself dynamically to RF environment
— better spectral and power efficiency

Weaknesses

@ Limited sample rate and dynamic range of ADCs and DACs
— analog front end needed for filtering

@ Resource usage, energy consumption, cost
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Digital Audio Broadcasting (DAB) Specification

Modes
Four modes for different frequency ranges and RF characteristics
@ Presentation: Mode | (Code: All Modes)

DAB Mode | OFDM signal

@ Frames with 76 OFDM symbols (1 pilot, 75 data)

@ Null symbols (energy zero) to separate frames

@ 1536 subcarriers a 1 kHz & central carrier zero — 1.537 MHz

@ D-QPSK modulation for each subcarrier

@ Cyclic prefix: 504 samples — SFN with max. TX distance 74 km

Upper Layers

@ Punctured convolutional coding
@ Energy dispersal, Time interleaving
@ MPEG 2 audio coding
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GNU Radio

Overview

@ Open source framework for real-time software radios

@ Provides many common building blocks: FFT, FIR & IIR filters,
mathematical operations, AGC, modulation & demodulation, ...

Flow Graph Concept

@ Programmer creates a directed graph for sample flow

@ Signal processing blocks are written in C++ and wired together in
Python

Signal Processing Block

| \

@ work() function receives a number of samples from scheduler

@ Block processes as many samples as possible and returns the
number of consumed and produced samples
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Universal Software Radio Peripheral (USRP)

Hardware

@ Interface between computer and antenna is needed
@ Most commonly used with GNU Radio: USRP

v

USRP

@ Two AD9862 Mixed Signal Front-End Processors

@ 4 DACs with sampling rate 128 MSPS — 2 1/Q TX channels
@ 4 ADCs with sampling rate 64 MSPS — 2 1/Q RX channels

@ Altera Cyclone FPGA for conversion to/from baseband,
decimation/interpolation, multiplexing and buffering

@ Cypress FX2 USB 2.0 interface
@ Daughterboards according to selected frequency range
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(Source: http:/ettus.com)
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OFDM | — Synchronisation

Time Synchronisation
@ Frame start detection must be accurate, as the other blocks
depend on it
@ Can easily be done by looking at the energy of the signal (Null
symbols)
@ Implemented with moving sum, inverter and peak detector

Frequency Synchronisation

@ Small subcarrier spacing — accurate synchronisation needed
@ Fine frequency synchronisation (offsets < subcarrier spacing)
e compare cyclic prefix to end of the symbol — fine frequency offset
can be estimated from the phase offset
@ Coarse frequency synchronisation (offsets > subcarrier spacing)

e done after fine frequency synchronisation and after FFT
e simply shift signal in the frequency domain — very efficient
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OFDM Il — Demodulation

Demodulation

@ Besides time and frequency synchronisation, demodulation is
rather straightforward

@ Sampler: Remove cyclic prefix, pack each OFDM symbol in a
vector

e FFT
@ Calculate phase difference (undo the D in D-QPSK)

@ Magnitude equalization (only needed for soft bits, as the
information is only in the phase)

@ Undo frequency interleaving: Mix symbols according to
sequence specified in DAB standard

@ | and Q components contain independent bits — simply check if
R(x) >0and I(x) >0
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Test Setup

Simulation Cycle

@ Generate random bytes

@ Modulation

@ Channel-model distorts OFDM signal

@ Demodulation

@ Calculate BER from original and received bytes

Channel Model

@ Sampling frequency offset modeled by fractional interpolator
@ Multipath propagation modeled with FIR filter

@ Frequency offset (signal source + multiplication block)

@ AWGN (noise source + adder block)
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Results — SNR
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Results — Effects of Multipath Propagation
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Conclusions

Conclusions
@ Real-time processing is possible
@ FIBs successfully decoded
@ No audio yet

Challenges

@ Very efficient algorithms and programming needed

@ Many signal processing papers are written from a primarily
mathematical perspective

Advantages

@ Same code for simulation and actual receiver

@ Open source code of existing blocks helps understand algorithms
@ Existing code can sometimes be adapted for new purposes

@ GNU Radio: Large and enthusiastic community
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Questions?

Thank you for your attention.
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