DAB

Software Receiver Implementation

Andreas Muller
Supervisor: Michael Lerjen

ETH-ITET-CTL

June 13, 2008

0 Introduction
@ Task
@ Software Defined Radio
e DAB
@ GNU Radio and USRP

e Implementation
@ OFDM Synchronisation
@ OFDM Demodulation

e Evaluation
@ Test Setup
@ Results

0 Conclusions

e Questions

Introduction

o Introduction
@ Task
@ Software Defined Radio
@ DAB
@ GNU Radio and USRP

Introduction

Task

Goal: Implementation of a real-time DAB receiver as SDR

SDR

Software Defined Radio — (almost) all signal
processing in software

.

DAB

Digital Audio Broadcasting — digital radio
technology standardized by ETSI

Real-time

Process data as fast as it arrives — 2 MSPS or 16
MB/s

| N\

\

Introduction
[]

Software Defined Radio

Digitize the signal and do all the signal processing in (high level,
architecture independent) software.

Strengths

@ Flexibility
@ Reusable code, fast development cycle

@ Cognitive radio: Adapts itself dynamically to RF environment
— better spectral and power efficiency

Weaknesses

@ Limited sample rate and dynamic range of ADCs and DACs
— analog front end needed for filtering

@ Resource usage, energy consumption, cost

Introduction

Digital Audio Broadcasting (DAB) Specification

Modes
Four modes for different frequency ranges and RF characteristics
@ Presentation: Mode | (Code: All Modes)

DAB Mode | OFDM signal

@ Frames with 76 OFDM symbols (1 pilot, 75 data)

@ Null symbols (energy zero) to separate frames

@ 1536 subcarriers a 1 kHz & central carrier zero — 1.537 MHz

@ D-QPSK modulation for each subcarrier

@ Cyclic prefix: 504 samples — SFN with max. TX distance 74 km

Upper Layers

@ Punctured convolutional coding
@ Energy dispersal, Time interleaving
@ MPEG 2 audio coding

Introduction
@00

GNU Radio

Overview

@ Open source framework for real-time software radios

@ Provides many common building blocks: FFT, FIR & IIR filters,
mathematical operations, AGC, modulation & demodulation, ...

Flow Graph Concept

@ Programmer creates a directed graph for sample flow

@ Signal processing blocks are written in C++ and wired together in
Python

Signal Processing Block

| \

@ work() function receives a number of samples from scheduler

@ Block processes as many samples as possible and returns the
number of consumed and produced samples

Introduction
oeo

Universal Software Radio Peripheral (USRP)

Hardware

@ Interface between computer and antenna is needed
@ Most commonly used with GNU Radio: USRP

v

USRP

@ Two AD9862 Mixed Signal Front-End Processors

@ 4 DACs with sampling rate 128 MSPS — 2 1/Q TX channels
@ 4 ADCs with sampling rate 64 MSPS — 2 1/Q RX channels

@ Altera Cyclone FPGA for conversion to/from baseband,
decimation/interpolation, multiplexing and buffering

@ Cypress FX2 USB 2.0 interface
@ Daughterboards according to selected frequency range

T T T
o Qo §
o 551

(Source: http:/ettus.com)

Implementation

9 Implementation
@ OFDM Synchronisation
@ OFDM Demodulation

Implementation
°

OFDM | — Synchronisation

Time Synchronisation
@ Frame start detection must be accurate, as the other blocks
depend on it
@ Can easily be done by looking at the energy of the signal (Null
symbols)
@ Implemented with moving sum, inverter and peak detector

Frequency Synchronisation

@ Small subcarrier spacing — accurate synchronisation needed
@ Fine frequency synchronisation (offsets < subcarrier spacing)
e compare cyclic prefix to end of the symbol — fine frequency offset
can be estimated from the phase offset
@ Coarse frequency synchronisation (offsets > subcarrier spacing)

e done after fine frequency synchronisation and after FFT
e simply shift signal in the frequency domain — very efficient

Implementation
o

OFDM Il — Demodulation

Demodulation

@ Besides time and frequency synchronisation, demodulation is
rather straightforward

@ Sampler: Remove cyclic prefix, pack each OFDM symbol in a
vector

e FFT
@ Calculate phase difference (undo the D in D-QPSK)

@ Magnitude equalization (only needed for soft bits, as the
information is only in the phase)

@ Undo frequency interleaving: Mix symbols according to
sequence specified in DAB standard

@ | and Q components contain independent bits — simply check if
R(x) >0and I(x) >0

Evaluation

© Evaluation
@ Test Setup
@ Results

Evaluation
o

Test Setup

Simulation Cycle

@ Generate random bytes

@ Modulation

@ Channel-model distorts OFDM signal

@ Demodulation

@ Calculate BER from original and received bytes

Channel Model

@ Sampling frequency offset modeled by fractional interpolator
@ Multipath propagation modeled with FIR filter

@ Frequency offset (signal source + multiplication block)

@ AWGN (noise source + adder block)

Evaluation
o0

Results — SNR

»— Mode 1
* —x Mode 2
% -x Mode 3
Mode 4

BER

7
10 5] 5 10 15 20

SNR [dB]

Evaluation
oce

Results — Effects of Multipath Propagation

s XX X 3 N
e w XXX

P

% - x Mode 2 Mag 0.5

.

400

. =-- Mode 3 Mag 0.5
10
% Mode 4 Mag 0.5 s e X o
VS = _X'x*—x—**‘x
¥ - . -
2] x ESe 20
10 B x x
® ol e
. / x
x % X
s x
r’ X X
L 107F /! X
E * ! #
h ;
h x
10*F '
% ®
10°F
%]
10 %
50 100 150 200 250 300 350
Echo delay [samples]
DAB Mode 1 2 3 4
Cyclic Prefix Length | 504 | 126 | 63 | 252

Conclusions

0 Conclusions

Conclusions

Conclusions

Conclusions
@ Real-time processing is possible
@ FIBs successfully decoded
@ No audio yet

Challenges

@ Very efficient algorithms and programming needed

@ Many signal processing papers are written from a primarily
mathematical perspective

Advantages

@ Same code for simulation and actual receiver

@ Open source code of existing blocks helps understand algorithms
@ Existing code can sometimes be adapted for new purposes

@ GNU Radio: Large and enthusiastic community

Questions

e Questions

Questions?

Thank you for your attention.

	Introduction
	Task
	Software Defined Radio
	DAB
	GNU Radio and USRP

	Implementation
	OFDM Synchronisation
	OFDM Demodulation

	Evaluation
	Test Setup
	Results

	Conclusions
	Questions

