
Department of Information Technology
and Electrical Engineering

Communication Technology Laboratory

DAB
Software Receiver Implementation

Andreas Müller

Advisor: Michael Lerjen
Professor: Prof. Dr. Helmut Bölcskei

Spring Term 2008

Preface

Wireless standards are subject to rapid development and frequent changes, making old hardware
obsolete at a high rate. On the other hand, the constantly increasing computational power of
general purpose computers allows developers to move functionality away from hardware and
specialized processors, to high-level software running on arbitrary general purpose processors.
This leads to the idea of software defined radios, where as much of the signal processing as
possible is done in software. While this idea is not new, CPUs have only recently become fast
enough for practical implementations of wireless standards in software.

This semester thesis investigates the possibility of implementing a receiver for the Digital
Audio Broadcasting (DAB) standard [1] in software, by using the GNU Radio toolkit – a free
open-source framework for the creation of software defined radios.

Outline

The report is split into the following chapters:

Chapter Introduction presents the project and some background.

Chapter DAB gives an overview of the DAB standard.

Chapter Software Defined Radio gives a brief introduction into Software Defined Radio.

Chapter GNU Radio and the USRP introduces the GNU Radio toolkit and the Universal
Software Radio Peripheral (USRP).

Chapter Implementation describes the implementation of DAB in GNU Radio.

Chapter Conclusions and Outlook reviews the project and draws some conclusions.

ii

Author: Andreas Müller andrmuel@ee.ethz.ch
Supervisor: Michael Lerjen mlerjen@nari.ee.ethz.ch
Professor: Prof. Dr. Helmut Bölcskei boelcskei@nari.ee.ethz.ch

Acknowledgements

I would like to thank my supervisor, Michael Lerjen, for his continuous support with helpful
comments and ideas throughout the project. I would also like to thank the Communication
Technology Laboratory (CTL) for allowing me to pursue this project, despite the fact that the
CTL does currently not make any use of GNU Radio.

I would further like to thank Jens Elsner for helpful tips and for allowing me to gain from
his experience from his own experiments with DAB and GNU Radio. This helped in avoiding
some pitfalls, such as the problems with signals from the TVRX daughterboard. Jens also
provided the contact to Nicolas Alt, who allowed me to take a look at his complete DAB receiver
implementation in Matlab. This was very helpful, both from a design perspective, and because
the comparison with my own implementation allowed me to verify each step.

Furthermore, I would like to thank the ISG, and especially David Schneider, for providing
GNU Radio on the Tardis machines and for hosting the Subversion (SVN) repository used for
this project.

Last but not least, I would like to thank the GNU Radio developers, for providing a very
interesting toolkit, that allowed me to learn about software radios in a very practical manner
and experiment with real-time DAB.

Contents

1 Task Description 1

2 Introduction 6
2.1 Project Idea . 6
2.2 Software Framework . 6
2.3 Contributions . 7
2.4 Some Words on Notation . 7

3 DAB 8
3.1 Introduction . 8
3.2 DAB Modes . 9
3.3 Fast Information Channel (FIC) . 9

3.3.1 FIB Assembler . 9
3.3.2 Energy Dispersal . 9
3.3.3 Convolutional Coding . 9

3.4 Main Service Channel (MSC) . 10
3.5 Frame Assembly and OFDM Modulation . 11

3.5.1 Frames . 11
3.5.2 OFDM Modulation . 11
3.5.3 Complete Signal . 12

3.6 Practical Considerations . 14
3.6.1 Availability of DAB in Switzerland . 14
3.6.2 Audio Quality . 14

4 Software Defined Radio 15
4.1 Ideal Software Radio . 15
4.2 Practical Software Radio . 16

4.2.1 Analog-Digital Converters . 16
4.2.2 Bus Speed . 16
4.2.3 Performance of the Processing Unit . 17
4.2.4 Latency . 17

4.3 Review and Outlook . 17

5 GNU Radio and the USRP 18
5.1 GNU Radio . 18

5.1.1 GNU Radio Architecture . 19
5.1.2 GNU Radio Companion . 21

5.2 The USRP . 22
5.2.1 USRP Architecture . 23
5.2.2 Using the USRP in a GNU Radio Application 25

5.3 Wrap Up . 25

CONTENTS iv

6 Implementation 26
6.1 Setup . 26
6.2 Physical Layer (OFDM) . 27

6.2.1 Input Filtering . 28
6.2.2 Time Synchronisation . 28
6.2.3 Fine Carrier Frequency Synchronisation 30
6.2.4 OFDM Sampler . 33
6.2.5 FFT . 34
6.2.6 Coarse Carrier Frequency Synchronisation 34
6.2.7 Phase Differentiation . 34
6.2.8 Removal of the Phase Reference Symbol 35
6.2.9 Sampling Frequency Offset Estimation and Resampling 35
6.2.10 Magnitude Equalization . 37
6.2.11 Frequency Interleaving . 37
6.2.12 Symbol Demapping . 38

6.3 Evaluation of the Physical Layer . 38
6.3.1 The Test Setup . 38
6.3.2 BER in AWGN Channel . 38
6.3.3 Effects of Coarse Carrier Frequency Offsets 39
6.3.4 Effects of Fine Carrier Frequency Offsets 41
6.3.5 Effects of Sampling Frequency Offsets . 42
6.3.6 Effects of Multipath Propagation . 43
6.3.7 Evaluation of the Processing Speed . 43
6.3.8 Receiving a Live Signal . 45

6.4 Fast Information Channel (FIC) . 45
6.4.1 FIC Symbol Selection and Repartitioning 45
6.4.2 Convolutional Coding . 46
6.4.3 Energy Dispersal Scrambling . 47
6.4.4 FIB Sink . 47

7 Conclusions and Outlook 48
7.1 Conclusions . 48
7.2 Outlook . 48

A Signal Flow Graphs 50

B FFTW Speed Evaluation 55

C Additional Tools 57
C.1 OProfile . 57
C.2 Python, IPython and SciPy . 57
C.3 Doxygen . 58
C.4 Swig . 58
C.5 Graphviz, dot and dump2dot . 58
C.6 Subversion . 58

D Code Overview 59
D.1 Python Code . 59

D.1.1 Quality Assurance . 60
D.1.2 Channel Tests . 60

D.2 C++ Code . 61
D.3 Patches . 61

CONTENTS v

E Installation 62
E.1 Operating System . 62
E.2 Packages . 62
E.3 External Dependencies . 62
E.4 Installation . 62

F Presentation 64

G CD-ROM Content Listing 72

H Acronyms 73

Bibliography 76

List of Figures

3.1 Block diagram of a DAB transmitter. 8
3.2 Fast Information Channel according to DAB specification. 9
3.3 Main Service Channel according to DAB specification. 10
3.4 DAB transmission frame. 11
3.5 QPSK constellation used for the PRS. 12
3.6 QPSK constellation used for the other symbols. 12

4.1 Ideal SDR receiver (top) and transmitter (bottom). 16

5.1 Screenshot of the running example application. 22
5.2 GRC with a complete FM broadcast receiver. 22
5.3 The USRP with 4 daughterboards. 23
5.4 High level block diagram of the USRP. 24
5.5 USRP block diagram . 24

6.1 Block diagram of the OFDM demodulation. 27
6.2 Null symbol detection . 28
6.3 Null symbol detection. 29
6.4 Fine carrier frequency synchronisation. 31
6.5 Fine carrier frequency synchronisation. 32
6.6 Corrected fine carrier frequency offset . 32
6.7 Phase jumps because of insufficient fine frequency synchronisation. 33
6.8 No more phase jumps because of averaging. 33
6.9 Plot of partially synchronised symbols. 35
6.10 Plot of the phase over the subcarrier number. 35
6.11 Estimated phase offset per carrier after 10, 50, 100 and 500 symbols, with α = 0.01. 36
6.12 BER in a noisy channel (tested with 1MB data per transmission). 39
6.13 BER in channel with coarse carrier frequency offset. 40
6.14 BER with coarse carrier frequency offsets (100kB data blocks). 40
6.15 Fine carrier frequency offset without correction (simulated with 10MB data blocks). 41
6.16 Sampling frequency offset – no correction (1MB data packets). 42
6.17 Sampling frequency offset with correction (1MB data packets). 42
6.18 Effect of multipath propagation (simulation runs with 500kB data packets). . . . 43
6.19 Effect of taps with different magnitudes (500kB data packets). 44
6.20 DAB constellation sink with samples from the Swiss DAB ensemble at 227.36 MHz. 46
6.21 Station labels extracted from a DAB signal. 47

A.1 First version of OFDM demodulation. 51
A.2 Revised version of OFDM demodulation: With resampling, magnitude equaliza-

tion and a single block for fine frequency estimation. 52
A.3 DAB OFDM test bench: Modulation, channel model and demodulation. 53

LIST OF FIGURES vii

A.4 Complete receiver with USRP as signal source, OFDM demodulation and FIC
decoding. 54

B.1 FFT speed evaluation. 55

List of Tables

3.1 DAB parameters and variables . 13
3.2 DAB signal parameters. 13

5.1 Parameters of the D/A and A/D converters in the USRP. 24

6.1 Classes of sample streams used for testing. 27
6.2 Cyclic prefix length. 43

B.1 FFT runtime evaluation results . 56

Chapter 1

Task Description

The following pages reflect the task description, as provided by Michael Lerjen.

2

Communication Technology Laboratory

Communication Theory Group
Prof. Dr. H. Bölcskei
Sternwartstrasse 7
CH-8092 Zürich

Semester Thesis Project
in Information Technology
and Electrical Engineering

Spring Semester 2008

for
Andreas Müller

DAB receiver implementation

Supervisors: Michael Lerjen (mlerjen@nari.ee.ethz.ch),
Hand-out date: 2008-03-03
Due date: 2008-06-06

Please do not distribute any copies of this project description
before the end of your project

3

1 Introduction

1.1 DAB

Since many years, analog systems are more and more replaced by their digital successors.
This trend also embraces the electronic mass media. As a new digital radio standard, Dig-
ital Audio Broadcasting (DAB) has been developed in the EU project Eureka-147 between
1987 and 2000. It was standardized by the European Telecommunications Standards In-
stitute (ETSI) [1] and the broadcast infrastructure is now more and more implemented
mainly in Europe but also in Canada and China. A total of 500 mio customers worldwide
can already receive DAB signals at their homes.

DAB is based on state-of-the-art techniques like OFDM, convolutional coding, data com-
pression and also offers extra services like program information, traffic information, mul-
timedia object transmission and conditional access.

1.2 GNU Radio

The GNU Radio project [3] develops free hardware and software for a software defined
radio (SDR) system. The hardware and the software of this project is based on flexible
building blocks and software libraries, which can be configured to implement receivers
and transmitters for different radio standards.

2 Project Goals

• Based on the DAB standard [1] and further literature, a concept shall be worked
out how the GNU Radio hardware and software together with MATLAB can be em-
ployed to build a real-time DAB receiver.

• Identify possible problems and system bottlenecks and analyze possible solutions.

• Implement building blocks for a real-time DAB receiver.

3 Project Tasks

The tasks given represent work items and questions we see at the start of the project.
This tentative list is mainly to serve as an orientation and can be modified and extended,
depending on the project progress.

• Get familiar with the DAB standard.

2

4

• Analyze the performance and complexity of different algorithms for the sub-blocks
of the system.

• Implement blocks in Matlab or C++ and compare their perfomance and processing
complexity. Always optimize the system for real-time usability.

• Implement a demonstrator application that can be presented.

• Documentation and Presentation.

4 Project organization

The duration of the thesis is 14 weeks.

• Set up a project plan and track progress continously.

• Organize weekly meetings with your thesis supervisors. The meetings will be held
to evaluate the status of the project and to discuss potential problems.

• Document your work in a thesis report. We recommend to use LATEXand to start the
documentation at the beginning of the project.

5 End of Project

The due date is Friday, June 6, 2008.

Two copies of the thesis report need to be handed in, containing also a CD/DVD with all
relevant files in a clean and documented directory structure. The copies remain property
of the IKT.

At the end of the thesis, there will be a short presentation of the project and its results
(15 min presentation and 5 min Q&A) to a wider audience.

Please note that the thesis will only be accepted when the keys for the ETZ building are
properly returned.

Zürich, April 3, 2008 Prof. Dr. H. Bölcskei

3

5

References

[1] ETSI Standard,“ETSI EN 300 401 V1.4.1,” European Standard (Telecommunications se-
ries)

[2] WWW, “WorldDAB Standards and Technical Specifications Homepage,”
http://www.worlddab.org/technology/standards_specs

[3] WWW, “GNU Radio homepage,” http://gnuradio.org/trac

4

Chapter 2

Introduction

2.1 Project Idea

The goal of this semester thesis is to implement a complete real-time software receiver for DAB, a
digital radio technology standardized by the European Telecommunications Standards Institute
(ETSI), which will be introduced in Chapter 3.

DAB is mainly targeted at the Very High Frequency (VHF)1 and Ultra High Frequency
(UHF)2 band; for lower frequencies, a similar technology called Digital Radio Mondiale (DRM)3

exists. While several free and open-source DRM receiver implementations, such as Dream4

or Diorama5 exist, no open software implementation of a real-time DAB receiver is currently
available, even though DAB is older than DRM [3, 4]. An explanation can be found in the
used bandwidth: While DRM uses a bandwidth of less than 20 kHz, DAB occupies 1.537 MHz.
Because of the small bandwidth, DRM can be sampled without complicated hardware (a common
sound card is in fact sufficient [5]). A DAB signal on the other hand can not be sampled without
appropriate hardware (section 5.2 will introduce a suitable device), and the higher bandwidth
makes real time processing much more difficult.

Although a software implementation is obviously less efficient than the use of dedicated
hardware, it will be shown that a software implementation still has several advantages, one of
which is its very high flexibility. In the case of DAB, the argument for a software implementation
is supported by the DAB+ standard, which replaces the current DAB standard (in Switzerland,
DAB+ will be introduced in 20096). While this renders many hardware receivers useless, a
software receiver can be updated easily.

2.2 Software Framework

The software framework used during the development of the presented DAB receiver implemen-
tation is GNU Radio, an open-source Software Defined Radio (SDR) toolkit. GNU Radio will
be introduced in Chapter 5.

130-300 MHz
2300-3000 MHz
3The DRM specification is available at the ETSI website as well [2].
4Available at http://drm.sourceforge.net/.
5Available at http://nt.eit.uni-kl.de/forschung/diorama/.
6More information is available at http://www.dab-digitalradio.ch/.

http://drm.sourceforge.net/
http://nt.eit.uni-kl.de/forschung/diorama/
http://www.dab-digitalradio.ch/

2.3. CONTRIBUTIONS 7

2.3 Contributions

An inquiry on the GNU Radio mailing list7 about Orthogonal Frequency Division Multiplexing
(OFDM) and DAB revealed, that Jens Elsner had already created an implementation of the DAB
physical layer (OFDM) some time ago. Unfortunately, his implementation is not compatible
with some of the newer developments in GNU Radio. Additionally, one goal for the presented
implementation was to use independent modular signal processing blocks (which results in simpler
blocks with better reusability), whereas Jens’ receiver is mainly implemented as one big block
(which tends to result in faster code and allows the use of feedback loops). For this reasons, none
of the code written by Jens is reused in this thesis. The code was however still interesting as a
reference. Jens also provided some DAB samples and shared his experience from experiments
with the USRP. Especially his warnings about problems with the Television Receiver (TVRX)8

saved me from wasting a lot of time and energy. Additionally, Jens’ student thesis [6] provided
a lot of interesting and relevant information.

GNU Radio itself also includes some code for OFDM. Although this code is not DAB spe-
cific, part of this code was used as a basis for the DAB implementation, namely the code for
fine carrier frequency synchronisation and part of the code for coarse carrier frequency synchro-
nisation. Additionally, one OFDM block, the cyclic prefixer, could be used directly without any
adjustments. As DAB uses an OFDM scheme that is fundamentally different from the one used
by the GNU Radio OFDM code, most of the existing OFDM blocks could however not be reused.
On the other hand, many non OFDM-specific blocks from GNU Radio were very useful, such as
the Fast Fourier Transform (FFT) block, Finite Impulse Response (FIR) filter blocks, the Trellis
module, various blocks for mathematical operations and numerous low-level blocks.

Finally, Jens Elsner also provided a contact to Nicolas Alt, who has implemented a complete
DAB receiver in Matlab, which he kindly shared with Jens and me. Although his implementation
is designed as an off line DAB receiver, having a working software model and “known to work“
samples was highly useful to verify each step of the GNU Radio implementation, especially for
the Fast Information Channel (FIC) decoder. Additionally, the idea to use the distance between
two Null symbols to get an estimate for the sampling frequency was adopted from Nicolas’ code.

2.4 Some Words on Notation

The following notation is used throughout this semester thesis:

� Function names, class names, file names and executable commands are printed in a monospace
font

� Functions are additionally designated by brackets, e.g. foo xy()

7http://lists.gnu.org/mailman/listinfo/discuss-gnuradio
8The TVRX is a daughterboard for the USRP; more on this will be explained in Chapter 5.2.

http://lists.gnu.org/mailman/listinfo/discuss-gnuradio

Chapter 3

DAB

3.1 Introduction

DAB is a digital radio technology, which was developed between 1981 and 1993 and standardized
by ETSI in 1997. DAB makes use of various advanced technologies, such as OFDM, convolutional
coding and audio coding. Besides an audio signal, DAB can also be used to transmit additional
data, such as program information, traffic information, paging services or even complete HTML
pages [3].

This chapter aims to be a basic introduction into the technical details of DAB. The full DAB
specification is available for free on the ETSI website [1]. Please note that this introduction
describes the transmit path, as does the specification. The chapter Implementation (Chapter 6)
on the other hand is written from a receiver perspective.

Figure 3.1, which is a simplified version of the block diagram shown in Section 4 on Page 22
of the DAB specification [1], shows the general design of a DAB transmitter.

Audio
stream

MP2
audio
encoder

Conditional
Access
Scrambler
(optional)

Energy
Dispersal

Convolutional
Encoder

Time
Interleaver

Conditional
Access
Scrambler
(optional)

Energy
Dispersal

Convolutional
Encoder

Time
Interleaver

Main
Service
Multiplexer

(other
data)

(other
data)

FIB
assembler

Energy
Dispersal

Convolutional
Encoder

Transmission
Frame
Multiplexer

FIC and MSC
Symbol
Generator

OFDM Signal Generator

Synch.
Channel
Symbol
Generator

CIFs

FIBs
FIDC

MCI

SI

DAB transmission signal

Figure 3.1: Block diagram of a DAB transmitter.

3.2. DAB MODES 9

3.2 DAB Modes

The DAB specification defines four sets of parameters for four different modes. Although this
affects the FIC and the Main Service Channel (MSC) as well, the main differences between the
modes are on the physical layer.

3.3 Fast Information Channel (FIC)

The FIC is made up of Fast Information Blocks (FIBs), which contain control information, such
as Multiplex Configuration Information (MCI) (information about the association of data with
services), Service Information (SI) (such as radio station names) or Conditional Access (CA)
information (indication of whether and how content is scrambled).

The information carried in the FIC is generally information, that is needed by the receiver to
be able to interpret the other channels. As this information is particularly important, the FIC
uses a high level of error protection. The basic scheme of the FIC is shown in Figure 3.2.

FIB
assembler

Energy
Dispersal

Convolutional
Encoder

Figure 3.2: Fast Information Channel according to DAB specification.

3.3.1 FIB Assembler

The FIB assembler packs up the information of the FIC into packets of size 32 bytes, so called
FIBs. Each FIB contains 30 bytes of data and a 16 bit Cyclic Redundancy Check (CRC) sum,
which allows the receiver the verify correct decoding. The CRC is calculated with the polynomial

G(x) = x16 + x12 + x5 + 1

The specification of FIBs does of course also include a lot of protocol details, such as infor-
mation about the different types of FIBs, where in the FIB which information can be found, etc.
For the sake of brevity, this information is completely omitted here. It can be found mainly in
Section 5 of the DAB standard.

3.3.2 Energy Dispersal

The energy dispersal block asserts that there are no unwanted patterns in the data, as this might
result in an output signal with discontinuous energy.

For this purpose, a Pseudo Random Binary Sequence (PRBS) generated by the Linear Feed-
back Shift Register (LFSR) with the polynomial

P (x) = x9 + x5 + 1

with initial state of all registers set to one is added modulo 2 (i.e. XORed) to the data.
As the XOR operation is symmetric, the energy dispersal block is exactly the same in the

transmit and receive path.

3.3.3 Convolutional Coding

To protect the data against errors, coding is applied. Coding is split into two parts – first, the
data is coded and secondly, puncturing is applied.

3.4. MAIN SERVICE CHANNEL (MSC) 10

Convolutional Code

As specified in Section 11.1.1 of the DAB standard, the encoder consists of a Finite State Machine
(FSM) with 64 states (the code has constraint length 7, i.e. the current bit and 6 past bits are
used). The FSM produces four output bits from one input bit. The bits are created with the
following modulo 2 addition of input bits:

x0,i = ai ⊕ ai−2 ⊕ ai−3 ⊕ ai−5 ⊕ ai−6

x1,i = ai ⊕ ai−1 ⊕ ai−2 ⊕ ai−3 ⊕ ai−6

x2,i = ai ⊕ ai−1 ⊕ ai−4 ⊕ ai−6

x3,i = ai ⊕ ai−2 ⊕ ai−3 ⊕ ai−5 ⊕ ai−6

Input bits outside the codeword are zero by definition.

Puncturing

Puncturing is applied to adjust the code rate. The process here is rather simple: Some predefined
bits are deleted from the codeword, according to puncturing vectors. For different protection
levels, resp. code rates, 24 different puncturing vectors are specified.

3.4 Main Service Channel (MSC)

The MSC transports Common Interleaved Frames (CIFs), which contain different Service Components
(SCs). Depending on the service, a packet based or a stream based mode can be used. All ser-
vices contained in the MSC are multiplexed according to the information carried in the FIC.
The main service contained in the MSC is stream based audio data.

The scheme of the MSC is shown in Figure 3.3.

Audio
stream

MP2
audio
encoder

Conditional
Access
Scrambler
(optional)

Energy
Dispersal

Convolutional
Encoder

Time
Interleaver

Conditional
Access
Scrambler
(optional)

Energy
Dispersal

Convolutional
Encoder

Time
Interleaver

Main

Service

Multiplexer

(other
data)

(other
data)

Figure 3.3: Main Service Channel according to DAB specification.

In case of an audio stream, the data is first encoded with the MPEG-1 Audio Layer II (MP2)
codec. The data may then be scrambled, to prevent access by unauthorized users. Energy
dispersal and convolutional encoding is then applied in the same way as in the FIC (though with
different parameters).

Differently from the FIC, the information is then interleaved in time. Mixing up the infor-
mation in time serves to protect the data against short-time interferers across all frequencies.

Finally, the different information blocks from the MSC are multiplexed according to the
information specified in the FIC.

3.5. FRAME ASSEMBLY AND OFDM MODULATION 11

3.5 Frame Assembly and OFDM Modulation

3.5.1 Frames

The information from the FIC and the MSC is split among transmission frames, which have a
duration of 96 ms1. Each frame consists of a Null symbol, a Phase Reference Symbol (PRS)
and 75 OFDM symbols containing FIC and MSC information. The structure of a DAB frame is
shown in Figure 3.4.

Null Symbol PRS FIC Data Symbols MSC Data Symbols

FIB FIB FIB CIF CIF CIF CIF

Figure 3.4: DAB transmission frame.

Null Symbol

For the duration of the Null Symbol, no signal is transmitted. This is done to indicate the
separation of the frames.

Phase Reference Symbol

The PRS (sometimes also referred to as pilot symbol) is a predefined OFDM symbol, which
serves as phase reference.

Data Symbols

The other symbols in the frame contain either FIC or MSC data. Please note that there is no
one-to-one association between symbols and FIBs or CIFs.

3.5.2 OFDM Modulation

The OFDM signal2 consists of 1536 frequency-interleaved subcarriers, each of which is individ-
ually modulated with π

4 Differential Quadrature Phase Shift Keying (D-QPSK).

QPSK Mapping

Two different Quadrature Phase-Shift Keying (QPSK) constellations are used.
The constellation shown in Figure 3.5 is used for the first symbol only, the PRS. For the

other symbols, the constellation shown in Figure 3.6 is used.

Differential Modulation

To achieve differential modulation, each symbol is is multiplied to the previous symbol before
transmission.This means, that the phase of the current symbol is always added to the phase of
the previous symbol, which results in output symbols with constellations alternating between

1For better readability, this section always refers to DAB mode I. Parameters for all modes are collected in
Table 3.2 on Page 13.

2As many texts about OFDM already exist, OFDM itself is not discussed here. A good introduction can be
found in [7].

3.5. FRAME ASSEMBLY AND OFDM MODULATION 12

I

Q

Figure 3.5: QPSK constellation used for the PRS.

I

Q

0010

11 01

Figure 3.6: QPSK constellation used for the other symbols.

the constellation shown in Figure 3.6 and the one from 3.5. Since each constellation is shifted
by π

4 relative to the previous one, this is called π
4 D-QPSK.

Frequency Interleaving

The individual OFDM subcarriers are mixed according to a static sequence defined in the DAB
standard. Frequency interleaving prevents that too much information of the same codeword is
lost if there is a small-bandwidth interferer.

3.5.3 Complete Signal

The complete DAB signal is specified in [1] as

s(t) = <

e2πfct
∞∑

m=−∞

L∑
l=0

K/2∑
k=−K/2

zm,l,k · gk,l(t−mTF − TNull − (l − 1)Ts)

with

gk,l(t) =

{
0 for l = 0
e2πk(t−∆)/TU · Rect(t/TS) for l = 1, 2, . . . , L

and TS = TU + ∆.

The parameters and variables, as defined in [1], are listed in Table 3.1.
Please note that zm,l,k = 0 for k = 0. This means that the central subcarrier is not used.

The value gk,l(t) = 0 for l = 0 on the other hand, represents the Null symbol.
The values for the parameters, which depend on the transmission mode, are given in Table

38 in the DAB specification [1]. For reference, the values are listed in Table 3.2. The elementary
time period is T = 1/2048000 second.

The variables defined in Table 3.1 will be used throughout this text; as they depend on the
used DAB mode, please refer to Table 3.2 for specific values.

3.5. FRAME ASSEMBLY AND OFDM MODULATION 13

Variable Description
L Number of OFDM symbols per frame, exclusive Null symbol
K Number of subcarriers
TF Length of the frame without the Null symbol
TNull Length of the Null symbol
TS Length of an OFDM symbol different than the Null symbol
TU Inverse of the subcarrier spacing
∆ Length of the guard interval
zm,l,k Complex D-QPSK symbol of carrier k of OFDM symbol l in transmission frame m
fc Central frequency of the OFDM signal

Table 3.1: DAB parameters and variables

Parameter DAB Mode I DAB Mode II DAB Mode III DAB Mode IV
L 76 76 153 76
K 1536 384 192 768
TF 196608T 49152T 49152T 98304T

= 96ms = 24ms = 24ms = 48ms
TNull 2656T 664T 345T 1328T

≈ 1.297ms ≈ 324µs ≈ 168µs ≈ 648µs
TS 2552T 638T 319T 1276T

≈ 1.246ms ≈ 312µs ≈ 156µs ≈ 623µs
TU 2048T 512T 256T 1024T

= 1ms = 250µs = 125µs = 500µs
∆ 504T 126T 63T 252T

≈ 246µs ≈ 62µs ≈ 31µs ≈ 123µs

Table 3.2: DAB signal parameters.

The different modes are specified to accommodate different frequency ranges and operating
conditions. In Section 15.1 of the DAB specification [1], suitable conditions are described as
follows (quote):

� Transmission mode I is intended to be used for terrestrial Single Frequency Networks (SFN)
and local-area broadcasting in Bands I, II and III.

� Transmission modes II and IV are intended to be used for terrestrial local broadcasting in
Bands I, II, III, IV, V and in the 1452 MHz to 1492 MHz frequency band (i.e. L-Band). It
can also be used for satellite-only and hybrid satellite- terrestrial broadcasting in L-Band.

� Transmission mode III is intended to be used for terrestrial, satellite and hybrid satellite-
terrestrial broadcasting below 3000 MHz.

One notable feature is the possibility to use Single Frequency Networks (SFNs) in mode I.
This means, that multiple geographically separated transmitters broadcast at exactly the same
frequency. This requires that the transmitters are accurately synchronised both in time and
frequency to avoid interference at the receiver. Even with synchronized transmitters, there
may however still be a delay between two signals from different transmitters arriving at the
receiver, because of different path lengths. The effects of this are the same as from multipath
propagation. The solution in the standard is to require that the maximum distance between

3.6. PRACTICAL CONSIDERATIONS 14

each pair of transmitters in an SFN, divided by the propagation speed, must be smaller than
the length of the cyclic prefix. Like this, no signal arriving from any secondary transmitter will
have a delay longer than the cyclic prefix, and the signal quality is not affected, as long as the
magnitude of the delayed signal is not too large (a simulation of these effects is presented in
Section 6.3.6).

3.6 Practical Considerations

3.6.1 Availability of DAB in Switzerland

In Switzerland, three DAB ensembles exist, each of which is an SFN with multiple transmitters.
Each of the three ensembles serves one language region; the ensemble for the German speaking
part of Switzerland can be found at 227.36 MHz.

As the runtime distance of signals from different transmitters in an SFN must not be longer
than the cyclic prefix, it would not be possible to use one SFN for all of Switzerland – with a
cyclic prefix of length 504 samples (mode I), the maximum distance between two transmitters in
an SFN is

dmax = lcp ∗ T ∗ c ≈ 504 ∗ 1
2048000

s ∗ 300′000km/s ≈ 73.83km

3.6.2 Audio Quality

Although DAB is theoretically superior to Frequency Modulation (FM), the audio quality is
unfortunately severely limited because many broadcasters use reduced bit rates [3]. Together
with an artificially increased loudness3 and dynamic range compression, this can reduce the audio
quality severely. A closer look at these problems is beyond the scope of this thesis, but more
information can be found in [9].

In the Swiss DAB ensembles, besides a very low bit rate, some of the channels are even sent
in mono only4. Because of this, the audio quality of Swiss DAB transmissions is worse than the
audio quality of FM radio stations.

3Many recording studios and broadcast radio stations artificially increase the loudness of their music for
marketing reasons. This has led to the so called loudness war [8].

4A list of DAB ensembles in Switzerland with the broadcast channels and the transmitted quality can be found
under http://digiradio.ch/dab/programme/ch/index.html.

http://digiradio.ch/dab/programme/ch/index.html

Chapter 4

Software Defined Radio

A Software Defined Radio (SDR) or just Software Radio (SR)1 is a radio that is built entirely or
in large parts in software, which runs on a general purpose computer. A more extensive definition
is given by Joseph Mitola, who coined the term Software Radio:

A software radio is a radio whose channel modulation waveforms are defined in soft-
ware. That is, waveforms are generated as sampled digital signals, converted from
digital to analog via a wideband DAC and then possibly upconverted from IF to RF.
The receiver, similarly, employs a wideband Analog to Digital Converter (ADC) that
captures all of the channels of the software radio node. The receiver then extracts,
downconverts and demodulates the channel waveform using software on a general
purpose processor. Software radios employ a combination of techniques that in-
clude multi-band antennas and RF conversion; wideband ADC and Digital to Analog
conversion (DAC); and the implementation of IF, baseband and bitstream process-
ing functions in general purpose programmable processors. The resulting software-
defined radio (or ”software radio”) in part extends the evolution of programmable
hardware, increasing flexibility via increased programmability. [10]

This means, that instead of using analog circuits or a specialized Digital Signal Processor
(DSP) to process a radio signal, the digitized signal is processed by architecture independent
high level software running on a general purpose processor. The term radio designates any
device, that transmits and/or receives radio waves.

While most modern radios contain firmware that is written in some kind of programming
language, the important distinction in a software radio is that it is not tailored to a specific chip
or platform, and it is therefore possible to reuse its code across different underlying architectures.

4.1 Ideal Software Radio

In the ideal case, the only hardware that is needed besides a computer is an antenna and an
Analog Digital Converter (ADC) for the receiver, as well as a Digital Analog Converter (DAC)
for the transmitter. A SR would thus look as depicted in Figure 4.1.

In the receiver, a transmitted radio signal is picked up by an antenna, and then fed into an
ADC to sample it. Once digitized, the signal is sent to some general purpose computer (e.g. an
embedded PC) for processing.

The transmitter looks very similar, except that the signal is sent in the reverse direction,
and a DAC is used instead of an ADC. In a complete transceiver, the processing unit and the
antenna may be shared between receiver and transceiver.

1This two terms are used interchangeably in this semester thesis.

4.2. PRACTICAL SOFTWARE RADIO 16

PC

D
A

A
D

Figure 4.1: Ideal SDR receiver (top) and transmitter (bottom).

4.2 Practical Software Radio

While the approach presented in the previous section is very simple and (in the ideal case)
extremely versatile, it is not practical, due to limitations in real hardware. However, various
solutions have been suggested, e.g. in [11], to overcome these problems.

In the following sections, we take a quick look at the different hardware limitations. For
better readability, only the receiving side is discussed. The transmitting side is symmetrical.

4.2.1 Analog-Digital Converters

The two parameters of interest in ADCs are sample rate and resolution.
The sample rate limits the maximum bandwidth of the received signal – according to Harry

Nyquist and Claude Shannon, the sampling rate must be at least twice as high as the bandwidth.
Current ADCs are capable of sampling rates in the area of 100 Mega Samples Per Second

(MSPS), which translates to a bandwidth of 50 MHz. While this bandwidth is enough for most
current applications, the carrier frequency is usually higher than 50 MHz. In practice, a Radio
Frequency (RF) front-end is therefore usually required, to convert the received signal to an
Intermediate Frequency (IF).

The second parameter, the ADC resolution, influences the dynamic range of the receiver. As
each additional bit doubles the resolution of the sampled input voltage, the dynamic range can
be roughly estimated as

R = 6dB · n
where R is the dynamic range and n the number of bits in the ADC.

As ADCs used for SDRs usually have a resolution of less than 16 bits, it is important to filter
out strong interfering signals – such as signals from mobile phones – before the wideband ADC2.
This is usually done in the RF front-end.

4.2.2 Bus Speed

Another problem lies in getting the data from the ADC to the computer. For any practical bus,
there is a maximum for the possible data rate, limiting the product of sample rate and resolution
of the samples.

The speed of common buses in commodity PCs ranges from a few MBit/s to several GBit/s;
as an example, the Peripheral Component Interconnect (PCI) 2.2 bus has a theoretical maximum
speed of 532MB/s.

2The other possibility would be to attenuate the whole signal, such that the interferer fits into the dynamic
range of the ADC; as the signal of interest would be attenuated as well, this would however mean that it would
no longer be possible to use the whole dynamic range of the ADC for the signal of interest.

4.3. REVIEW AND OUTLOOK 17

4.2.3 Performance of the Processing Unit

For real-time processing, the performance of the Central Processing Unit (CPU) and the sample
rate limit the number of mathematical operations that can be performed per sample, as samples
must – in average – be processed as fast as the arrive.

In practice, this means that fast CPUs, clever programming and possibly parallelization
amongst different computers is needed. If this does not suffice, a compromise must be found, to
use a less optimal but faster signal processing algorithm.

4.2.4 Latency

Since general purpose computers are not designed for real-time applications, a rather high latency
can occur in practical SDRs.

While latency is not much of an issue in transmit-only or receive-only applications, many
wireless standards, such as Global System for Mobile communications (GSM) or Digital Enhanced
Cordless Telecommunications (DECT) require precise timing, and are therefore very difficult to
implement in an SDR.

4.3 Review and Outlook

Because of the use of general purpose processing units, an implementation of a given wireless
application as an SDR is likely to use more power and occupy more space than a hardware radio
with analog filtering and possibly a dedicated signal processor. Because an SDR contains more
complex components than a hardware radio, it will likely also be more expensive, given a large
enough production volume.

While this looks quite grim for SDRs, they have one distinct advantage: Flexibility. Bringing
the flexibility of software to the radio world introduces a number of interesting possibilities.
For example, very much the same way as someone may load a word processor or an internet
browser on a PC, depending on the task at hand, a SDR could allow its user to load a different
configuration, depending on whether the user wants to listen to a broadcast radio transmission,
place a phone call or determine the position via Global Positioning System (GPS). A new
application may even be added after the device is finished. Since the same hardware can be used
for any application, a great reuse of resources is possible.

Even more advantages, such as the rapid development process, are listed and explained in [11],
where arguments can also be found, why the cost of an SDR compared to a traditional radio
may even be reduced in certain cases.

Another interesting possibility enabled by SDR is the creation of a cognitive radio, which is
aware of its RF environment and adapts itself to changes in the environment [12]. By doing this,
a cognitive radio can use both the RF spectrum and its own energy resources more efficiently.
As a cognitive radio requires a very high degree of flexibility, its creation is much easier, when
an SDR is used.

Chapter 5

GNU Radio and the USRP

This chapter introduces the GNU Radio software toolkit and the associated hardware device,
the USRP.

5.1 GNU Radio

GNU Radio is a free software toolkit for implementing software defined radios. It is licensed
under the GNU General Public License (GPL), which means that anyone is allowed to use, copy
and modify GNU Radio without limits, provided that extensions are made available under the
same license.1

The goal of GNU Radio is to “bring the code as close to the antenna as possible”, and
therefore “turn hardware problems into software problems”, according to the projects founder
Eric Blossom [13].

To this end, GNU Radio provides numerous building blocks for signal and information pro-
cessing, as well as a framework to control the data flow between them. By “wiring together”
such building blocks, a user can create a software defined radio, similar to how one might con-
nect physical RF building blocks to create a hardware radio. An incomplete list of the functions
provided by GNU Radio includes:

� Mathematical operations (add, multiply, log, . . .)

� Interleaving, delay blocks, . . .

� Filters (FIR, Infinite Impulse Response (IIR), Hilbert, . . .)

� FFT blocks

� Automatic Gain Control (AGC) blocks

� Modulation and demodulation (FM, AM, PSK, QAM, GMSK, OFDM, . . .)

� Interpolation and decimation

� Trellis and Viterbi support

Apart from signal processing blocks, GNU Radio also provides support for various signal
sources and sinks, such as:

� Signal generators
1A more detailed explanation and the complete license can be found under http://www.gnu.org/licenses/

gpl.html.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

5.1. GNU RADIO 19

� Noise generators

� Pseudo random number generators

� USRP source and sink (to transmit/receive signals via USRP)

� Graphical sinks (Oscilloscope, FFT, Waterfall, . . .)

� Audio source and sink

� File source and sink (reads/writes samples from/to a file)

� User Datagram Protocol (UDP) source and sink (to transport samples over a network)

The GNU Radio project was founded by Eric Blossom and is now supported by numerous
enthusiasts around the world. While GNU Radio was started on a Linux platform, it now
supports various Unixes, and partially even Windows.

More information about GNU Radio can be found on the GNU Radio website [14]. An
introduction to GNU Radio and its background can also be found in the wired magazine [15].

5.1.1 GNU Radio Architecture

Flow Graphs

Each GNU Radio application has at its core a flow graph. A flow graph is a directed graph,
whose nodes can be either signal sources, sinks or processing blocks. Blocks have one or more
ports, where edges can be connected. The edges represent the connections between the blocks,
i.e. they determine the data flow. A block can have multiple incoming and/or outgoing ports.
Blocks without incoming ports are called sources, and blocks without outgoing ports sinks.

One restriction for flow graphs is, that they may not contain loops. This does not mean, that
signal processing algorithms with loops are impossible, but the part that contains a loop in the
data flow must be implemented fully inside one block.

Data Format

The most common data format used to represent samples in GNU Radio blocks are complex
floats – interleaved floats, of which the first is treated as real, and the second as imaginary part.
This means, that each sample occupies 8 bytes. Other data formats are float (4 byte float values),
short (2 byte integer values) and char (1 byte integer values).

These data types also exist as vector types, which is useful for blocks that operate on a fixed
number of samples at once, e.g. FFT blocks.

The data format can often be recognized from the name of the block. If a block is named
foo vXY, the block operates on vectors (as v is present), has the input type X and the output
type Y. The types can be

� c – complex interleaved floats

� f – floats (4 bytes)

� s – short integers (2 bytes)

� b – byte integers (1 byte)

For instance, the block fft vcc is an FFT block that operates on vectors with complex
interleaved floats.

5.1. GNU RADIO 20

Implementation

GNU Radio is implemented in C++ and Python, and uses SWIG2 to create an interface between
the two. While C++ is used for low-level programming, mainly for the core of the framework, to
create low-level signal processing blocks and for hardware support, Python is used on a higher
level, to connect signal processing blocks into an application, or the wrap multiple low level
blocks into a higher level block. This approach allows the combination of the high speed of C++
and the ease of use of Python.

To create an application, a programmer derives her own class from either the class top block
of the module gr in the package gnuradio for a console application, or from the class std top -
block of the module stdgui2 in the package gnuradio.wxgui3 for a GUI based application.
Currently, this can only be done in Python; support for pure C++ applications, which may
sometimes be preferable (e.g. for embedded systems), is under development.

Signal processing blocks can be either synchronous, which means that there is an integer
relationship between the sample rate at input and output ports, or asynchronous. Synchronous
blocks are classes that are usually derived from gr sync block (blocks with an 1:1 sample rate
ratio), gr sync interpolator (1:N) or gr sync decimator (N:1). Asynchronous blocks are
commonly directly derived from gr block. Blocks are usually written in C++; there is however
the possibility to wrap up several blocks into a higher level block. This can be done in Python
by deriving a class from gr.hier block2.

Once the desired blocks have been instantiated, they can be connected with the connect
method of the main class in Python (i.e. the class which is derived from top block or std top -
block, that represents the flow graph). This is the analog of drawing edges in the graph. To
get a runnable graph, all ports of each block must be connected. Signal processing can then be
started with the start method of the flow graph.

In a running GNU Radio application, the scheduler of the GNU Radio framework manages
the blocks and the flow of samples between them, assisted by the forecast() methods of the
blocks, which can be used by the programmer, to tell the scheduler, how many input samples a
block requires to produce a given number of output samples.

The actual signal processing is done in the function general work() (in the case of a general
block), resp. work() (in the case of a synchronous block). These functions are called by the
scheduler and are given a certain number of input samples (which is not fixed, but can be
influenced by the programmer to a certain degree). The work function then does its signal
processing and reports back, how many input samples were processed and how many output
samples produced.

GNU Radio also takes care of buffering the data. While signal processing blocks usually
process samples as fast as they come in (or as fast as the CPU allows, depending on which is
lower)4, some signal sources and sinks provide, respectively require a constant sample rate (e.g.
the audio sink). In this case, it is the programmers responsibility to make sure, that data is
processed fast enough. If a source delivers more samples than the application can process, then
some buffer will eventually overflow, and samples are lost (this is called an overrun). If the
sample rate at the input of a sink is too low on the other hand, the buffer will eventually be
empty and a glitch in the signal results (an underrun).

Such problems can also occur, if some interface (e.g. the Universal Serial Bus (USB) interface
between an USRP and the PC) is too slow, or if data streams with different fixed sample rates
are connected without appropriate interpolation or decimation. Obviously, it is crucial to avoid
such problems as much as possible for a real-time radio application (this can never be completely
guaranteed however, as a PC usually does not run a real-time OS).

2SWIG is an acronym for “Simplified Wrapper and Interface Generator”. Information about SWIG can be
found under http://www.swig.org/.

3GNU Radio uses the WX Widgets GUI library. Please refer to http://www.wxwidgets.org/ for more infor-
mation.

4It is however possible to limit the processing rate by using the block gr.throttle.

http://www.swig.org/
http://www.wxwidgets.org/

5.1. GNU RADIO 21

While the principle of connecting blocks with continuous data streams is quite general, it has
its limitations, for example when dealing with packet based data. Currently, several extensions
to GNU Radio, such as message blocks, which are better suited for handling packet-based data5

are under development.
Further information on the GNU Radio architecture and on writing signal processing blocks

can be found in the tutorial “How To Write a Block” by Eric Blossom [16].

An illustrative example

The following listing shows a simple and illustrative example of a GNU Radio application:

#!/ usr / b in /env python

from gnuradio import gr
from gnuradio import audio
from gnuradio . wxgui import stdgui2 , f f t s i n k 2

class a u d i o f f t g r a p h (s tdgu i2 . s t d t o p b l o c k) :
def i n i t (s e l f , frame , panel , vbox , argv) :

s tdgu i2 . s t d t o p b l o c k . i n i t (s e l f , frame , panel , vbox , argv)
aud io samp le ra t e = 48000
s r c = audio . source (aud io samp le ra t e)
amp = gr . m u l t i p l y c o n s t f f (1000)
s ink = f f t s i n k 2 . f f t s i n k f (panel ,

f f t s i z e =1024 ,
sample rate=aud io sample ra t e)

s e l f . connect (src , amp, s ink)

i f name == ’ ma in ’ :
app = stdgu i2 . stdapp (a u d i o f f t g r a p h , ”Real Time Audio Spectrum”)
app . MainLoop ()

In this example, the PC’s microphone is taken as signal source. The signal is amplified by
the factor 1000 and the spectrum of the resulting signal is displayed on the screen.

Contrary to the explanations above, the flow graph is never started with its start() method.
In this example, this is done automatically, when the stdapp is initialised.6

Figure 5.1 shows a screenshot of the resulting application.

5.1.2 GNU Radio Companion

GNU Radio Companion (GRC) is a graphical front end for GNU Radio. It allows the creation
of software radios by wiring together graphical blocks. While GRC was originally developed
independently of GNU Radio, it can now be found in the official GNU Radio repository. GRC
is developed by Josh Blum.

Although visual programming is not as flexible as programming in python, programming with
visual tools can be much more intuitive. A simple FM broadcast receiver can be created with
GRC in a few minutes, as shown in Figure 5.2.

5Please visit http://gnuradio.org/trac/wiki/MessageBlocks for information about message blocks.
6The start() function is actually called from the constructor of the panel, as can be seen in http://gnuradio.

org/trac/browser/gnuradio/trunk/gr-wxgui/src/python/stdgui2.py.

http://gnuradio.org/trac/wiki/MessageBlocks
http://gnuradio.org/trac/browser/gnuradio/trunk/gr-wxgui/src/python/stdgui2.py
http://gnuradio.org/trac/browser/gnuradio/trunk/gr-wxgui/src/python/stdgui2.py

5.2. THE USRP 22

Figure 5.1: Screenshot of the running example application.

Figure 5.2: GRC with a complete FM broadcast receiver.

5.2 The USRP

The Universal Software Radio Peripheral (USRP) is a piece of hardware that can be used with
GNU Radio, to build a software radio. It consists of a motherboard and various daughterboards7,
which can transmit and/or receive in different frequency ranges from 0 to around 2.4 GHz. To
allow the USRP to work at the desired frequency, the daughterboards can easily be exchanged8.

While GNU Radio can be used with other hardware, and the USRP with other software, the
two are usually used together, because of the ease of use and the relatively moderate price of the
USRP.

Just like with GNU Radio, all schematics and all code of the USRP, including the Verilog
code for the Field Programmable Gate Array (FPGA), is available for free, under the GNU

7The term USRP is also used for the motherboard alone.
8A list of available daughterboards can be found on the GNU Radio website under http://gnuradio.org/

trac/wiki/List_of_USRP_daughterboards

http://gnuradio.org/trac/wiki/List_of_USRP_daughterboards
http://gnuradio.org/trac/wiki/List_of_USRP_daughterboards

5.2. THE USRP 23

GPL. The USRP is developed and sold by Ettus Research9, in collaboration with the GNU
Radio developers.

In Figure 5.3, a photography of an USRP with four daughterboards can be seen.

Figure 5.3: The USRP with 4 daughterboards.

5.2.1 USRP Architecture

The USRP motherboard’s main components are an Altera Cyclone EP1C12 FPGA10, two
AD9862 Mixed Signal Front-End Processors11, and a Cypress FX2 USB 2.0 interface chip. Fig-
ure 5.4 shows a high level block diagram of the USRP, where the flow of the data between
antennas, USRP and the PC can be seen. The daughterboards are mainly responsible for initial
filtering and for mixing the signal to/from an intermediate frequency, whereas the motherboard
translates between the analog and digital domain, converts the samples to/from baseband, and
communicates with the PC.

As each of the two AD9862 chips contains two DACs and two ADCs, there are four receive
and four transmit channels, which can either be used as independent channels (if supported by
the daughterboard), or as two IQ channels. The core parameters of the D/A and A/D converters
are listed in Table 5.1.

Since all data is transmitted via USB, the maximum bandwidth is in practice limited by the
speed of the USB interface. With USB 2.0, a speed of about 32 MB/s is possible with good
USB chip sets, which results in a maximum bandwidth of around 8 MHz with complex 4-Byte
samples (16 Bit signed integers, in-phase and quadrature interleaved) and if only one channel is
used. For higher bandwidths, the resolution has to be reduced.

9See http://www.ettus.com for more info.
10Information about the FPGA can be found at the Altera website: http://www.altera.com/products/

devices/cyclone/overview/cyc-overview.html
11Their data sheet can be found under http://www.analog.com/en/prod/0,,AD9862,00.html.

http://www.ettus.com
http://www.altera.com/products/devices/cyclone/overview/cyc-overview.html
http://www.altera.com/products/devices/cyclone/overview/cyc-overview.html
http://www.analog.com/en/prod/0,,AD9862,00.html

5.2. THE USRP 24

Motherboard

USRP

U
S
B

2
.
0

RX
Dboard

TX
Dboard

RX
Dboard

TX
Dboard

FX2
USB

Altera
Cyclone
FPGA

AD9862
ADC/DAC

AD9862
ADC/DAC

PC

Figure 5.4: High level block diagram of the USRP.

DA converters AD converters
Speed 128 MSPS 64 MSPS
Resolution 14 Bit 12 Bit

Table 5.1: Parameters of the D/A and A/D converters in the USRP.

As it is not possible to transmit the data stream at the full sample rate via USB, up- and
down-conversion needs to be done in the USRP. Figure 5.5 shows a more detailed block diagram
of the USRP motherboard.

Figure 5.5: USRP transmit and receive paths (Source: GNU Radio Wiki12).

On the upper half, the receive chain can be seen. The signals are first converted into digital
samples; in the FPGA, the channels are then routed to the Digital Down-Converter (DDC)

12http://gnuradio.org/trac/wiki/UsrpRfxDiagrams

5.3. WRAP UP 25

blocks by a configurable multiplexer. In the DDCs, they are converted to baseband at the desired
frequency and decimated. The interior of the DDCs (which is not shown) consists of a CORDIC13,
which converts the signal to baseband, followed by a Cascaded Integrator Comb (CIC) filter with
a programmable decimation and a halfband filter with a fixed decimation of 2. Finally, all data
streams are interleaved sample wise, buffered and sent over the USB interface to the PC.

The transmit path is similar, with the exception that the up-conversion is done in the DAC
instead of the FPGA. More information can be found in the GNU Radio Wiki [18].

Latency

The whole system, consisting of an application on a general purpose PC, the USB interface and
the USRP, has together a latency of several hundred milliseconds. Because PC’s are not designed
for real-time applications, it is difficult to reduce the latency. This makes the use of the USRP
for TDMA systems difficult (i.e. application dependent reconfiguration on FPGA level would be
needed). Extensions to overcome such limitations are currently under development.

5.2.2 Using the USRP in a GNU Radio Application

GNU Radio provides the module gr-usrp14 for interaction with the USRP. The USRP and
its daughterboards can be fully controlled from Python. For this, the Python module usrp
provides several classes, such as source c, which uses the USRP as a source of complex baseband
samples. These classes provide several useful functions, e.g. to set the RX frequency of the USRP
(tune()), set the decimation rate (set decim rate()) or the programmable gain amplifier of the
AD converter (set pga()). When the class is instantiated in Python, the appropriate FPGA
configuration (bit stream) is automatically loaded (by default, the file std 2rxhb 2tx.rbf is
loaded, which contains two receive and two transmit paths; other bit streams, such as a bit
stream with four receive paths, are available). Other parameters, such as the decimation factor,
the multiplexer value and the number of channels can be set during instantiation and adjusted
on the fly whenever required.

5.3 Wrap Up

Together, GNU Radio and the USRP provide a powerful tool for creating software defined radios.
GNU Radio carefully abstracts lower level details from its users, to allow them to focus on their
application. With the growing number of available low-level signal processing blocks, GNU Radio
becomes more and more versatile. The USRP is kept as generic as possible. This makes it usable
for a wide range of applications; in most cases without the need to write any new Verilog code.

13A CORDIC is an efficient way to compute trigonometric functions. CORDIC stands for COordinate Rotation
DIgital Computer. More information is available in [17]. The CORDIC implementation for the USRP can be
found under http://gnuradio.org/trac/browser/gnuradio/trunk/usrp/fpga/sdr_lib/cordic.v

14http://gnuradio.org/trac/browser/gnuradio/trunk/gr-usrp

http://gnuradio.org/trac/browser/gnuradio/trunk/usrp/fpga/sdr_lib/cordic.v
http://gnuradio.org/trac/browser/gnuradio/trunk/gr-usrp

Chapter 6

Implementation

In this chapter, the implementation of the DAB receiver is presented. After a short explanation
of the general experimentation setup, the implementation of the OFDM demodulation will be
explained (Section 6.2). The OFDM part represents the major part of the work for this thesis, and
it was also extensively tested. For this purpose, an OFDM modulation block was implemented.
The results of these tests are discussed in Section 6.3. Finally, in Section 6.4, the implementation
of the FIC decoder, which was significantly facilitated by the availability of a generic trellis
module, gr-trellis, is discussed.

6.1 Setup

While it is possible to use GNU Radio to work on a signal that is received live over the air, it is
more convenient to record some samples to a file and use this file for experiments. From a file,
samples can easily be loaded into GNU Radio or Matlab. Using a file for development also has
the advantage that results are reproducible. Once the application is finished, it is easy to switch
to a signal received live.

The USRP with the TVRX daughterboard was therefore used to record about half a minute
worth of DAB Mode I samples from the Swiss DAB Ensemble at 227.36 MHz1. However, during
their experiments, Jens Elsner and Nicolas Alt had discovered, that the TVRX disturbs the phase
of the received signal strongly, making it very hard to decode the content.2 Nicolas was kind
enough to provide some of his samples, recorded with a Lyrtech SDR platform, which provided
a much cleaner signal. The Lyrtech samples on the other hand had a noticeable offset in the
sampling rate. This required some additional work to correct the sampling frequency, but did
not pose any problems otherwise.

For reference, Jens additionally provided some samples from a mode II DAB ensemble,
recorded with the USRP and the Direct Broadcast Satellite Receiver (DBSRX) daughterboard (in
Switzerland, there are unfortunately no DAB ensembles in the frequency range of the DBSRX).

Towards the end of this thesis, samples were additionally recorded with a setup consisting
of a spectrum analyzer to receive and filter the signal and an external mixer to move the signal
from the IF output of the spectrum analyzer (310.7 MHz) to a carrier frequency of 20 MHz,
which is in the range of the BasicRX. The samples were then recorded with the USRP and the
BasicRX daughterboard. With this setup, the FIC of a Swiss DAB signal could successfully be
decoded.

1A list of the available ensembles in Switzerland can be found under http://digiradio.ch/dab/programme/

ch/index.html.
2Jens noticed, that each symbol had a random phase offset, possibly due to phase noise in the oscillator of the

TVRX (the TVRX is the only daughterboard, which does not use the same clock source as the USRP mainboard).
Ettus Research is currently developing a new daughterboard for the frequency range of the TVRX, which will
hopefully solve these problems.

http://digiradio.ch/dab/programme/ch/index.html
http://digiradio.ch/dab/programme/ch/index.html

6.2. PHYSICAL LAYER (OFDM) 27

TVRX samples DBSRX samples Lyrtech samples BasicRX samples

Device USRP (TVRX) USRP (DBSRX) Lyrtech SDR USRP (BasicRX)
Frequency Band Band III L-Band Band III Band III
DAB Mode I II I I
Sampling frequency 2 MSPS 2 MSPS 2.048 MSPS 2 MSPS
Actual sampling frequency ≈ 1999973 SPS ≈ 1999983 SPS ≈ 2047846 SPS 1999971 SPS
Sampling frequency offset ≈ 14 ppm ≈ 9 ppm ≈ 75 ppm ≈ 15 ppm
Carrier frequency offset ≈ 4 kHz ≈ 3 kHz ≈ 74 kHz ≈ 0.04 kHz
Problems Random phase jitter Sample rate offset Add. equipment used
FIC decoding not successful successful successful successful

Table 6.1: Classes of sample streams used for testing.

Table 6.1 gives an overview over the used samples and lists some challenges that were en-
countered (Actually, multiple streams of each type of samples were used, to see the effects of
different Signal to Noise Ratios (SNRs), etc. The parameters listed in Table 6.1 are valid for all
used streams of each type, however.).

All used samples are complex floats. Although floats may be processed slower than integers
on certain architectures, they are much easier to work with, as the programmer needs to worry
much less about ranges and precision. The use of complex float samples is in fact rather common
in GNU Radio.

6.2 Physical Layer (OFDM)

DAB uses OFDM with D-QPSK modulation to transmit data. OFDM requires precise timing
and frequency synchronisation. To achieve this, several synchronisation blocks are needed, before
the signal can be demodulated. Figure 6.1 gives a coarse overview of the receiver, that has been
implemented in GNU Radio. More detailed signal flow graphs, that have been created directly
from the code, can be found in Appendix A.

Energy
Based
Null Symbol
Detection

Sample Flow

Control Signal (start of frames)

FFT Filter
(Bandpass) Fine

Frequency
Correction

OFDM
Sampler

FFT

Phase
Diff

y[n]=x[n]*
conj(x[n-1)

Energy
Based
Coarse
Frequency
Correction

(optional)

Resampling
(optional)

Remove
Pilot
Symbol

Frequency
Deinter-
leaving

Sampling
Rate
Estimation

Sample Rate Estimation

Symbol
Demapper

Figure 6.1: Block diagram of the OFDM demodulation.

The following sections explain the individual blocks. Please note that the description of the
blocks is written in the order, in which they were developed. This is not always the same order
as the order of blocks in the flow graph.

6.2. PHYSICAL LAYER (OFDM) 28

6.2.1 Input Filtering

If the user enables filtering, the samples are first passed through an FFT bandpass filter, which
is provided by GNU Radio (gr.fft filter ccc).

An FFT filter takes the FFT of the signal, multiplies it with the FFT of the taps and
transforms the result back into time domain. Although this means, two FFTs are needed3, the
convolution of the signal with the taps can be replaced by a multiplication. In the case of steep
filters with many taps, this results in quite a speed gain.

While the input filter can help to reduce the impact of noise and nearby interfering signals,
care must be taken not to cut away some part of the OFDM signal if there is a carrier frequency
offset. The crystal of the USRP is specified to an accuracy of 50 parts per million (ppm);
therefore, at 230 MHz, a maximal carrier frequency offset of about 12 kHz can be expected. The
TVRX daughterboard is an exception here however, as it contains its own oscillator. According
the data sheet of the TVRX, the frequency offset may be up to 50 kHz. While the actual carrier
frequency offset seems to be much smaller in practice (as can be seen in Table 6.1), a generous
filter cutoff frequency of 868 kHz (i.e. 100 kHz more than the signal bandwidth) is set as the
default value, because of the larger offsets that were seen with Lyrtech samples (such parameters
can be easily adjusted – all parameters are collected in the file parameters.py).

6.2.2 Time Synchronisation

Moving
Sum

-1

Peak
Detect

Figure 6.2: Null symbol detection

Time synchronisation is required to find the start of the frames. As many of the other blocks
rely on the frame start to process the signal, it is very important that the Null symbol detection
is accurate.

Since DAB frames are separated by Null symbols, during which the signal is zero (except for a
possible Transmitter Identification Information (TII) signal, which can be ignored, as its energy
is comparatively small), time synchronisation can easily and accurately be done by observing the
signal energy.

To find the Null symbol, a moving sum of the length of the Null symbol is first calculated,
which can be done with an FIR-filter with taps set to one:

y[n] =
TNull−1∑
k=0

x[n− k]

with TNull as specified in Table 3.2. The signal is then inverted and a peak detector from GNU
Radio, gr.peak detector fb is used, which is basically a finite state machine with two states.
Whenever a given threshold is exceeded, the peak detector starts looking for a maximum, until
the signal goes below the threshold again. Null symbol detection is shown in Figure 6.2.

Because the FIR filter is rather inefficient, it has been replaced by an equivalent IIR filter,

y[n] = y[n− 1] + x[n]− x[n− TNull]

While this replacement is mathematically simple, a practical implementation must take care that
no error accumulates, because of the limited precision of the calculations, and that there are no

3Technically, even three FFTs, but the transformation of the taps only has to be done once.

6.2. PHYSICAL LAYER (OFDM) 29

problems with new values being rounded away, if the sum is already large in comparison4. Exper-
iments showed that this was indeed a problem, and the moving sum was therefore implemented
as a new block in C++, with a double precision data type for the sum.

Figure 6.3 shows a part of the received signal (top), the output of the moving sum block
(bottom) and the detected start of the DAB frame (red).

Figure 6.3: Null symbol detection.

Null symbol detection is implemented in the class detect null in the file detect null.py
(directory gr-dab/src/python/).

Complexity Analysis

While the implementation with an FIR filter has a complexity of O(n ∗m) (with m being the
length of the Null symbol), the rewrite with a delay block and an IIR filter only has blocks with
O(n) complexity, and it can therefore be expected to run quite fast.

Although tests with Gaussian noise at a sample rate of 2.048 MSPS first seemed to imply that
time synchronisation alone still already uses most of the available processing power (on a laptop
with a Pentium Mobile CPU, clocked at 1.6 GHZ), OProfile5 later showed that actually, about
80% of the resources were spent on generating the noise. Analysis also shows, that with the FIR
implementation, most processing time is spent on calculating the moving sum (the two loops
belong to a Streaming SIMD Extensions (SSE) optimized assembler function that calculates the
complex dot product, which is used by the FIR filter):

CPU: CPU with timer interrupt, speed 0 MHz (estimated)

Profiling through timer interrupt

samples % image name symbol name

7768 96.3533 libgnuradio-core.so.0.0.0 .loop2

59 0.7318 libgnuradio-core.so.0.0.0 gr_fir_fff_simd::filter()

54 0.6698 libgnuradio-core.so.0.0.0 .loop1

41 0.5086 libgnuradio-core.so.0.0.0 gr_peak_detector_fb::work()

37 0.4589 libgnuradio-core.so.0.0.0 .cleanup

31 0.3845 libgnuradio-core.so.0.0.0 gr_vector_source_c::work()

19 0.2357 libgnuradio-core.so.0.0.0 float_dotprod_sse

16 0.1985 libgnuradio-core.so.0.0.0 gr_fir_fff_generic::filterN()

15 0.1861 libgnuradio-core.so.0.0.0 gr_complex_to_mag_squared::work()

10 0.1240 libgnuradio-core.so.0.0.0 gr_single_threaded_scheduler::main_loop()

8 0.0992 libgnuradio-core.so.0.0.0 gr_multiply_const_ff::work()

[...]

4For illustration: In Matlab, 1e20+1-1e20 evaluates to zero.
5For a brief description of OProfile, please see Appendix C.1.

6.2. PHYSICAL LAYER (OFDM) 30

In the delay block implementation on the other hand, CPU time is much more evenly dis-
tributed among the blocks, and the CPU usage is drastically reduced (this is not reflected in the
number of samples in the OProfile report, as a different amount of data was processed):

CPU: CPU with timer interrupt, speed 0 MHz (estimated)

Profiling through timer interrupt

samples % image name symbol name

2929 45.7871 libgnuradio-core.so.0.0.0 gri_iir::filter()

761 11.8962 libgnuradio-core.so.0.0.0 gr_peak_detector_fb::work()

646 10.0985 libgnuradio-core.so.0.0.0 gr_vector_source_c::work()

549 8.5821 libgnuradio-core.so.0.0.0 gr_sub_ff::work()

508 7.9412 libgnuradio-core.so.0.0.0 gri_iir::filter_n()

261 4.0800 libgnuradio-core.so.0.0.0 gr_complex_to_mag_squared::work()

215 3.3610 libgnuradio-core.so.0.0.0 gr_single_threaded_scheduler::main_loop()

123 1.9228 libgnuradio-core.so.0.0.0 gr_add_const_ff::work()

117 1.8290 libgnuradio-core.so.0.0.0 gr_multiply_const_ff::work()

[...]

The implementation of the moving sum block in C++ actually reduces the runtime even a
bit more.

6.2.3 Fine Carrier Frequency Synchronisation

Carrier frequency synchronisation is split into coarse and fine carrier frequency synchronisation.
The coarse carrier frequency error is defined as the frequency offset in multiples of the subcarrier
spacing (in the case of DAB, this is 1

TU
, with the value of TU as defined in Table 3.2 on Page

13), whereas the fine carrier frequency error is the remaining error, smaller than the subcarrier
spacing. In the presented implementation, fine carrier frequency synchronisation is done first.

As derived in [19], a fine carrier frequency offset actually has two separate effects:

� the amplitude of each symbol is reduced and the phase is shifted (i.e. the constellation is
rotated)

� Inter Carrier Interference (ICI) is introduced

Accurate fine frequency correction is therefore rather important; especially in a signal with
a small subcarrier spacing and possibly low SNR.

GNU Radio already implements several carrier frequency synchronisation blocks for OFDM.
One of them is a preamble correlator, as suggested by Timothy M. Schmidl and Donald C.
Cox in [20]. Schmidl and Cox make use of the fact, that if a pilot symbol is used, where all odd
subcarriers are zero, the first half of the training symbol is equal to the second half, up to a phase
difference, which depends only on the fine carrier frequency error ∆f (as the coarse frequency
error introduces phase differences only in multiples of a complete period):

φ = πTU∆f

where TU is again the inverse of the subcarrier spacing, as defined in Table 3.2. Schmidl and
Cox show, that the fine carrier frequency error can therefore be estimated as

∆̂f = φ̂/(πTU)

with

φ̂ = ∠(P (d)) = ∠
M−1∑
m=0

r∗d+mrd+m+M ,

where M is the number of complex samples in the first half of the training symbol and ri denotes
a complex baseband sample. Once the frequency error has been calculated, it can be corrected
by multiplying the signal with exp(−2tφ̂/TU).

6.2. PHYSICAL LAYER (OFDM) 31

This method is robust and has linear complexity. Unfortunately, the pilot symbols used in
DAB do not have the property that all odd carriers are zero.

Another synchronisation method implemented by GNU Radio is the cyclic prefix correlator,
as suggested by Jan-Jaap van de Beek, Magnus Sandell and Per Ola Börjesson in [21]. Instead
of comparing the first and the second half of a pilot symbol, this method compares the cyclic
prefix of any symbol to the last part of that symbol, whose phase should be identical, unless
there is a fine carrier frequency error. The method therefore uses the redundancy introduced by
the cyclic prefix, assuming that the channel is Additive White Gaussian Noise (AWGN). In their
paper however, they show that this method also works in a time-dispersive channel (although
with decreased performance). The existing code using this method was adapted for DAB. The
moving sum was implemented in the same way as presented in Section 6.2.2, and the block
therefore has linear complexity.

After calculating the fine carrier frequency offset, correction is straightforward: The original
signal is multiplied with a signal from a numerically controlled oscillator, whose frequency is as
high as the negated offset.

The implementation is in the file ofdm sync dab.py. Figure 6.4 shows the corresponding
block diagram.

z
-Tu Complex

Conjugate

Complex
to
Angle

Sample
and
Hold

Numerically
Controlled
Oscillator

Moving
Sum

Frame Start

z-Ts

z-Ts

Figure 6.4: Fine carrier frequency synchronisation.

In Figure 6.5, the result can be seen. The plot shows DAB data (blue), the start of the
symbols (red), the output of the moving sum over the phase difference (green) and the value
after the sample and hold block (magenta).

The result was verified by writing the synchronised signal into a file and feeding it through
synchronisation again. In Figure 6.6 it can be seen, that the fine frequency error is indeed
corrected. Beginning at the start of the first symbol, the phase difference goes close to zero
(the result can be seen at the end of the first symbol, because of the delay introduced by the
moving sum and the correlator itself). Please note that the first symbol is corrected with the fine
frequency error found by evaluating the phase difference of the cyclic prefix in the first symbol.
This can be done by simply delaying the signal by one symbol length, before doing the correction.

Improved Fine Carrier Frequency Synchronisation

While this method generally works, experiments later showed, that there were still some quite
abrupt changes in the estimated value for the fine carrier frequency offset, which led to jumping

6.2. PHYSICAL LAYER (OFDM) 32

Figure 6.5: Fine carrier frequency synchronisation.

Figure 6.6: Second pass through the fine frequency correction.

phase offsets in the DAB symbols, as shown in Figure 6.7 (for this plot, the DBSRX samples
were used).

One possible way to improve the fine carrier frequency offset estimation is to evaluate more
than one symbol per DAB frame and use the average value. The trade-off about this is, that
an additional delay is introduced. Additionally, if there is a sampling frequency offset, symbols
towards the end of the DAB frame tend to have larger timing offsets, since the timing is always
synchronised at the start of the frame. This means that in the presence of a sampling frequency
offset, the symbols at the start of the frame are more reliable for fine carrier frequency offset
estimation. For later symbols, the possibility that the sampling is not done exactly at the end
of the symbol is increased.

Another possibility is to adjust the value only gradually to changes, e.g. by using the correc-
tion value

fc[n] = αf̂f [n] + (1− α)fc[n− 1] 0 ≤ α ≤ 1

based on estimates f̂f [n] of the fine carrier frequency offset.

6.2. PHYSICAL LAYER (OFDM) 33

Figure 6.7: Phase jumps because of insufficient fine frequency synchronisation.

These two methods are implemented in the block ofdm sync dab, which makes use of the
C++ block ofdm ffs sample. The plot in Figure 6.8 shows, that the phase indeed doesn’t jump
any longer.

Figure 6.8: No more phase jumps because of averaging.

6.2.4 OFDM Sampler

The OFDM sampler is responsible for removing the cyclic prefix and slicing the sample stream
into vectors with one OFDM symbol each, i.e. each vector has the length of one symbol in time
domain. This task is implemented in the C++ block dab ofdm sampler, using a finite state
machine with three states.

The same block also adjusts the Null symbol control signal, such that it indicates the first
symbol vector of a DAB frame instead of the first sample.

6.2. PHYSICAL LAYER (OFDM) 34

6.2.5 FFT

Once the stream is split into vectors, they can be transformed into the frequency domain, by
applying the FFT. This is done with the block gr.fft vcc provided by GNU Radio. This block
uses the external Fastest Fourier Transform in the West (FFTW) library6 to perform fast Fourier
transformation.

6.2.6 Coarse Carrier Frequency Synchronisation

The goal of coarse carrier frequency synchronisation is to correct the carrier frequency offset in
multiples of the subcarrier spacing. As fine carrier frequency synchronisation has already been
done at this point, the total carrier frequency offset should be close to zero afterwards.

The effect of a coarse carrier frequency offset is that the subcarriers are moved to the wrong
FFT bins, and therefore interpreted as the wrong symbols. As even a shift of one subcarrier
spacing would usually result in complete loss of the information, coarse done frequency must
be done with high accuracy (i.e. coarse frequency correction is either done perfectly, or it fails
completely).

In this implementation, coarse carrier frequency correction is done after fine carrier frequency
synchronisation. In this case, coarse carrier frequency synchronisation can easily be done after
the FFT, by looking at the energy of the signal. In the case of DAB, this is supported by the
central carrier, which is always zero. The coarse carrier frequency offset estimation is therefore

f̂c = arg max
n

∑
0≤i≤K, i6=K/2

|X[i+ n]|2 n ∈ [0, LF −K)

where X[i] is the i-th entry in the FFT vector, K is the number of used subcarriers and
LF = TU/T the FFT length (please refer to Table 3.2 for specific values).

While this correlation has quadratic complexity, the same trick as for the moving sum – only
calculating the energy of the first offset and just adding the difference for the other offsets – can
be used to get linear complexity. This also makes it unnecessary to restrict the search range for
the frequency offset.

The implementation is in the C++ block dab ofdm coarse frequency correct, which also
removes the unused carriers and outputs vectors with K (the number of used subcarriers, as
specified in Table 3.2) symbols per vector.

6.2.7 Phase Differentiation

Since DAB uses OFDM with D-QPSK, the phase difference of consecutive symbols must be
calculated.

This can be done by multiplying each symbol with the complex conjugate of the previous
symbol:

y[n] = x[n] ∗ x[n− 1]

Although GNU Radio provides a block that does exactly this, a new C++ block, called
diff phasor vcc has been implemented, to allow the processing of complete symbol vectors
(while this does not have any algorithmic advantages, it simplifies both programming and schedul-
ing).

An interesting advantage of D-QPSK is that the absolute value of the phase of the symbols
never needs to be known, since only the phase difference from symbol to symbol is of interest.
Therefore, no phase equalization is done at any point – the PRS only serves as a reference to
calculate the first phase difference.

6The FFTW library is available under http://www.fftw.org/.

http://www.fftw.org/

6.2. PHYSICAL LAYER (OFDM) 35

6.2.8 Removal of the Phase Reference Symbol

Since the PRS is no longer needed, it can be removed. This is done in a small C++ block called
remove first symbol vcc.

6.2.9 Sampling Frequency Offset Estimation and Resampling

At this stage of the receiver, i.e. after synchronisation, slicing, FFT, phase differentiation and
PRS removal, a plot of the symbols should show four separate clouds with symbols belonging to
the four constellation points. Unfortunately, this was not the case. Figure 6.9 shows the plot of
the symbols (using the Lyrtech samples).

Figure 6.9: Plot of partially synchronised symbols.

More plots with different parameters led to the assumption, that there might be a frequency
dependent phase offset introduced by an inaccurate sampling rate. The plot displayed in Figure
6.10, which shows the phase of symbols from different subcarriers, confirmed this assumption.

Figure 6.10: Plot of the phase over the subcarrier number.

6.2. PHYSICAL LAYER (OFDM) 36

This problem is also described in [19], where it is shown that an offset in the sampling
frequency has the following effects:

� reduction of the amplitude of the symbols

� a phase shift for each symbol, depending on the distance to the central carrier

� inter-carrier interference, as the orthogonality between subcarriers is lost

According to [19], the phase offset on subcarrier i is

∆ϑi = 2π(εs · i+ εc)

where εc = ∆fc

∆f is the relative carrier frequency offset (with ∆fc the actual frequency offset and
∆f the subcarrier spacing) and εs = ∆fs/fs is the relative sampling frequency offset. In our
case, the sampling frequency is 2.048 MSPS with an offset of approximately 75 ppm. The phase
offset difference between the lowest and the highest subcarrier should therefore be

∆ϑi ≈ 2π ∗ 1536 ∗ 75 ∗ 10−6 ≈ 0.72

A coarse estimation from Figure 6.10 results in a similar value.
The first idea to solve this problem was to estimate the offset of each individual subcarrier

and use this estimation to correct the phase of each subcarrier. This idea is implemented in
the C++ block correct individual phase offset vff. The experiment showed however, that
this is not a good idea. Figure 6.11 shows the estimation of the offset for each subcarrier after
10, 50, 100 and 500 symbols. While the estimation for central carriers with small offsets is quite
precise, larger offsets cannot be estimated accurately, because as soon as an offset is larger than
π
4 , the symbol is associated to another phase region and the offset estimation gets wrong. In
Figure 6.11, this effect can be seen for the carriers form 0 to about 300.

Figure 6.11: Estimated phase offset per carrier after 10, 50, 100 and 500 symbols, with α = 0.01.

6.2. PHYSICAL LAYER (OFDM) 37

The approach used by Nicolas Alt in his implementation is to estimate the sample rate by
looking at the length of a frame. Since the start of each frame needs to be detected anyways (by
looking at the Null symbols), this can be implemented easily.

Once the actual sample rate is known, it can be used to estimate the individual phase offset
of each subcarrier, or to resample the signal (another very efficient and beautiful method is
described by Maja Sliskovic in [19] – the author basically suggests to adjust the twiddle factors
in the FFT to make up for the sampling frequency offset; as this only needs to be done once, it
is a very efficient method).

The method of choice for this implementation was to resample the signal. This is done by
fractional interpolator from GNU Radio and a separately running thread, which estimates the
sampling rate and updates the interpolation factor. As the interpolation ratio is a parameter
of the fractional interpolator rather than an input signal, the estimates are read from Python
and the parameter is updated accordingly. This approach however leads to the problem that the
exact moment, when the interpolation factor is updated, can not be controlled, and this might
therefore happen in the middle of a frame. To avoid this, the fractional interpolation from GNU
Radio has been extended, such that it ignores a newly set interpolation factor, until a new frame
starts.

As the drift of the sampling rate is usually small, even a static interpolation factor will in
practice usually suffice – in the case of the USRP, resampling is in fact usually not needed at all.
Dynamic resampling is therefore optional and not enabled by default.

6.2.10 Magnitude Equalization

While the original code did not perform any equalization of the magnitude at all (as the infor-
mation is only carried in the phase in a D-QPSK signal, this would be a waste of precious CPU
cycles), a magnitude equalizer was later added to allow the use of soft bits7 (for the use of a
trellis decoder with a continuous domain for the input values).

Because the distance to the constellation points is used to determine the certainty of a correct
detection for soft bits, it is important that all symbols are rescaled to have the same average
power. While this seems counterproductive, as the energy of a symbol contains information
about the certainty of correct detection, it makes sense, because the noise is also scaled.

To illustrate this, assume that a given OFDM subcarrier is received with an average energy
that is five times lower than on the other subcarriers, for instance because of frequency selective
fading due to multipath propagation. The symbols on this carrier will be amplified by a factor
of five during equalization, but since they will have approximately the same amount of noise as
the other carriers, the noise is also amplified and that symbol will likely be further away from
the constellation point, resulting in a soft-bit with smaller certainty.

6.2.11 Frequency Interleaving

The frequency interleaver mixes the different subcarriers, according to a fixed sequence specified
in the DAB standard. This is done to achieve better protection against narrowband interfering
signals. As the bits are spread in the frequency spectrum, a narrowband interferer is less likely
to disturb two bits that belong to the same codeword.

Frequency interleaving is implemented in the block dab frequency interleaver vcc. The
same block can be used for interleaving and deinterleaving, by simple passing an appropriate
interleaving sequence.

7The term soft bit is used to designate a bit with an associated value for the probability of the correctness of
that bit.

6.3. EVALUATION OF THE PHYSICAL LAYER 38

6.2.12 Symbol Demapping

Demapping is implemented in a small C++ block, which simply evaluates, whether the real
and the imaginary part of a given symbol are positive or negative. Even for soft bits, it is not
necessary to calculate the phase (which is rather slow, as the atan2 operation is quite CPU
intensive). As the real and the imaginary part of a given symbol belong to two independent bits,
the real and the imaginary part can directly be used as soft bit value.

6.3 Evaluation of the Physical Layer

6.3.1 The Test Setup

To allow testing of the OFDM implementation, a DAB transmitter was developed. As the
transmitter needs no synchronisation, frame start detection, etc. this implementation is quite
straightforward and was done in a much shorter time than the receiver.

The modulation block and the demodulation block, connected through a channel model, are
wrapped up in a test bench (which is implemented in the file channel tests/dab tb.py). This
test bench generates random bits, runs them though modulation, channel and demodulation and
estimates the Bit Error Rate (BER).

The channel model, a simple Python block provided by GNU Radio, models the following
imperfections:

� AWGN, modeled by a noise source and an adder

� Carrier frequency offset, modeled by a sine source and a multiplier

� Sampling frequency offset, modeled by a fractional interpolator

� Multipath propagation, modeled by FIR taps

While the imperfections are modeled in the channel, they may in practice also be introduced
by the receiver or the transmitter.

The complete test bench is shown in Figure A.3 in the Appendix.

6.3.2 BER in AWGN Channel

To evaluate the BER in a noisy channel, the script plot snr ber.py instantiates a DAB test
bench and steps through all DAB modes and a range of signal energies, while the noise energy
is fixed at 1. The results are then plotted and written to a file.

The resulting plot can be seen in Figure 6.12.
Some remarks on this figure:

� The energy of the signal is scaled by the FFT block. To solve this problem, the energy
is measured in a first run without noise, and an appropriate scale factor is consequently
applied. This also has the effect, that the energy that is specified for the signal is the
average energy of the signal including the Null symbols (without rescaling, the average
energy would be slightly lower).

� The energy of the signal is rescaled by its spectrum occupancy ratio (about 0.75), as the
signal does not occupy the same bandwidth as the noise.

� If too many frames are lost, the BER is reported as 0.5, as this is the equivalent to not
getting any information.

6.3. EVALUATION OF THE PHYSICAL LAYER 39

Figure 6.12: BER in a noisy channel (tested with 1MB data per transmission).

� The very first frame can not be detected, as there is no reference signal before the first Null
symbol, which makes detection of the frame start impossible. The first frame is therefore
ignored (this is no problem for a live receiver; loosing the first frame only implicates that
the user has to wait 50-100 ms longer before hearing something after turning on the radio).

� A small number of bytes is usually lost at the end. This happens, because the scheduler
does not move the last samples through the flow graph, when there is no more input. The
lost bytes are ignored for BER calculation (in a live receiver, there is no such problem, as
there is an endless stream of input samples).

6.3.3 Effects of Coarse Carrier Frequency Offsets

Although a frequency offset is usually introduced by an inaccurate carrier frequency in the
receiver, it can be modeled in the channel. A first test with different coarse carrier frequency
offsets (i.e. offsets in multiples of the subcarrier spacing) showed a rather weird and unsatisfactory
result, as can be seen in Figure 6.13.

This is surprising for a number of reasons. First of all, the BER should be zero, at least for all
small offsets, as it should be no problem to correct them. Secondly, even with completely random
data, one would not expect a BER over 0.5. Having a BER of exactly 1 means, that the received
signal constellation is probably rotated by 180 degrees. This would lead to the conclusion, that
each additional frequency offset of 1 kHz would add a phase offset of π

2 ; however, there was one
test at 32 kHz, which resulted in a BER of 0.25. This leads to the assumption, that the phase
offset must be exactly π

4 at 32 kHz, such that about half of the symbols are in the correct region
(50% of the bits from symbols in the wrong region are still correct, because moving the symbol
to a neighboring constellation region only changes one of the two bits carried in the symbol8,
making a total of 75% correct bits), and the added phase offset would be a little smaller than π

2 .
Further investigation revealed the source of the problem: Cutting away the cyclic prefix (in

the ofdm sampler) before doing the coarse frequency correction means, that a phase jump is
created, with the phase difference

∆φ = ∆φs · lcp = 2π · ∆f
fs
· lcp

8The constellation uses a Gray code, as can be seen in the constellation diagram in Figure 3.6 on Page 12.

6.3. EVALUATION OF THE PHYSICAL LAYER 40

Figure 6.13: BER in channel with coarse carrier frequency offset.

where ∆φs is the phase difference per sample, lcp is the length of the cyclic prefix, ∆f is the
carrier frequency offset and fs is the sampling frequency. If we express the carrier frequency
offset as ∆fn = ∆f

fsub
in multiples of the subcarrier spacing fsub, which is related to the FFT

length lfft by fs = fsub · lfft, we get

∆φ = 2π · lcp
lfft
·∆fn

While it would be easy to correct the carrier frequency offset before cutting away the cyclic
prefix, by multiplying it with a complex phasor, this would waste precious CPU cycles. Addi-
tionally, if the same energy based coarse frequency offset detection was to be used, two FFTs
would be required instead of one. The preferred solution to correct the phase offset is therefore
to calculate it from the frequency offset and the length of the cyclic prefix and correct it after
the FFT.

Figure 6.14: BER with coarse carrier frequency offsets (100kB data blocks).

With this problem fixed, a plot of the BER with coarse carrier frequency offsets from -300kHz
to +300kHz now looks as depicted in Figure 6.14.

6.3. EVALUATION OF THE PHYSICAL LAYER 41

Two different effects are visible here. Firstly, at an offset of about 110 kHz in either direction,
the BER starts to increase. This is due to the input bandpass, which in this experiment has a
bandwidth of 100 kHz more than the signal bandwidth and a transition width of 50 kHz. With
the filter removed, this effect vanishes. Secondly, at about 250 kHz offset in either direction,
the BER goes to 0.5, i.e. all information is lost. This happens, because the signal, which has
a bandwidth of 1.537 MHz is moved out of the received spectrum area, which has a bandwidth
of 2.048 MHz. At an offset of more than 256 kHz, it is therefore no longer possible to perform
accurate coarse frequency correction. Such large offsets are however rather unlikely in a practical
receiver.

6.3.4 Effects of Fine Carrier Frequency Offsets

A first plot of the BER with fine frequency offsets revealed, that the BER gets quite high if
the offset is close to half of the subcarrier spacing. This is not surprising: The fine frequency
offset can either be corrected up or down to the nearest subcarrier. With an offset of half the
subcarrier spacing, both is equally likely. While this would be okay by itself (coarse frequency
correction can cope with it), averaging of the fine frequency offset estimation causes a problem if
the estimation oscillates between plus and minus half of the subcarrier spacing, as the estimation
is in that case averaged to zero.

This problem can be avoided by detecting, when the fine frequency estimation switches its
correction direction. As a carrier frequency drift in both directions is equally likely, it is justified
to assume, that if the offset between two frames has changed by more than half of the subcarrier
spacing, it is more likely that there was a direction change, than that there is actually such a fast
carrier frequency drift. Furthermore, it is also quite unlikely, that such a fast carrier frequency
drift should occur – e.g. in DAB mode I with a frame length of roughly 96ms and a subcarrier
spacing of 1kHz, a frequency drift of more than 5.2kHz per second would have to occur to cause
problems (and since the frequency correction values are only updated at the start of the frames,
such a fast drift would be problematic in any case).

With this corrected version, the BER is zero for any fine frequency offset. Without noise, the
estimation of the fine carrier frequency offset generally deviates less than 0.5 Hz from the actual
offset, and even with noise present, the error is less than 10 Hz most of the time, as long as the
SNR is better than 10 dB.

Figure 6.15: Fine carrier frequency offset without correction (simulated with 10MB data blocks).

To illustrate the importance of fine carrier frequency synchronisation, Figure 6.15 shows the

6.3. EVALUATION OF THE PHYSICAL LAYER 42

BER of a Mode I DAB signal in a channel with an SNR of 15 dB and a fine carrier frequency
offset between 0 and 100 Hz (1/10 of the subcarrier spacing), with correction turned off.

6.3.5 Effects of Sampling Frequency Offsets

Figure 6.16: Sampling frequency offset – no correction (1MB data packets).

Figure 6.16 shows the effect of a sampling frequency offset without any correction (this test
was done with additional noise; the SNR is 15 dB).

Without correction, even small offsets in the area of 50 ppm have a dramatic effect. Since
crystal oscillators are often specified to an accuracy of around 50 ppm, this is critical.

With dynamic sampling rate correction enabled, the BER stays below 10−2, for offsets up to
10000 ppm – Figure 6.17 shows the plot (again with SNR 15 dB).

Figure 6.17: Sampling frequency offset with correction (1MB data packets).

6.3. EVALUATION OF THE PHYSICAL LAYER 43

The first five frames were ignored here, as the receiver needs some time to adjust to the
sample rate offset, which disturbs the result for the first few frames.

6.3.6 Effects of Multipath Propagation

The effect of multipath propagation can be modeled with an FIR filter. To keep things simple,
a single tap with variable magnitude and delay was used. The plot in Figure 6.18 shows the
result of a simulation run with a delay between 50 and 400 samples and an echo with half the
magnitude of the signal.

Figure 6.18: Effect of multipath propagation (simulation runs with 500kB data packets).

This plot is particularly interesting, when the lengths of the cyclic prefix for each mode is
kept in mind. As a reminder, the lengths are listed in Table 6.2.

DAB Mode 1 2 3 4
Length of the cyclic prefix 504 126 63 252

Table 6.2: Cyclic prefix length.

Comparing these numbers with the plot confirms, that as soon as the delay is longer than
the cyclic prefix, the effect of an echo increases drastically. For Mode 1, no errors occurred at all
(since zero can not be plotted on a log scale, this is not visible in the plot).

Figure 6.19 shows the effect of taps with magnitudes of 0.3 to 1 (relative to the signal power)
for DAB mode 1.

Echoes with magnitudes smaller than 0.2 have little effect, even when the delay is long
(magnitude 0.2 is not shown in the plot, as the BER is always zero).

6.3.7 Evaluation of the Processing Speed

After developing the complete OFDM layer without worrying too much about speed, real-time
processing was no longer possibly. In order to reclaim some of the CPU cycles, a resource usage
evaluation with OProfile was therefore needed.

A first evaluation showed, that most of the CPU time was spent for resampling. Resampling
from 2 MSPS to 2.048 MSPS used up more than 3/4 of the CPU time. Since the USRP cannot

6.3. EVALUATION OF THE PHYSICAL LAYER 44

Figure 6.19: Effect of taps with different magnitudes (500kB data packets).

sample with 2.048 MSPS directly, and the rational resampler block is obviously too slow, the
solution was therefore to adapt the code to work with a sample rate of 2 MSPS. The drawback
about this is mostly, that the FFT length is in that case also 2000. The speed penalty is however
acceptable (please refer to Appendix B for an evaluation of the speed of different FFT lengths).

The adaptation of the code for arbitrary sample rates only requires the update of a few
OFDM parameters. In the source code, this results in the following code fragment:

if self.sample_rate != self.default_sample_rate:

self.T = 1./self.sample_rate

self.ns_length = int(round(self.ns_length*float(self.sample_rate)/float(self.default_sample_rate)))

self.cp_length = int(round(self.cp_length*float(self.sample_rate)/float(self.default_sample_rate)))

self.fft_length = int(round(self.fft_length*float(self.sample_rate)/float(self.default_sample_rate)))

self.symbol_length = self.cp_length + self.fft_length

self.frame_length = self.symbols_per_frame * self.symbol_length + self.ns_length

With the resampler removed, the block wasting the most CPU cycles was the block that
calculates the phase for the fine carrier frequency synchronisation algorithm (block 16 in Figure
A.1). The atan2 operation employed by this block requires about 35% of the total CPU time
inside libgnuradio. As there is a sample and hold block right after the complex to arg block,
this is a huge waste of CPU cycles, which can however be fixed easily, by moving the phase
calculation after the sample and hold block.

With this update, real-time processing was possible again, however only with sampling fre-
quency correction (which uses another interpolation block) turned off. The OProfile report looked
as follows:

15118 17.9274 python2.4

TIMER:0|

samples| %|

5484 36.2746 libgnuradio-core.so.0.0.0

3100 20.5054 _dab_swig.so

2804 18.5474 libm-2.6.1.so

1286 8.5064 libc-2.6.1.so

1210 8.0037 libfftw3f.so.3.1.2

817 5.4042 kernel-2.6.24

[...]

6.4. FAST INFORMATION CHANNEL (FIC) 45

Obviously, most of the time is still spent inside libgnuradio. The FFTW library uses surpris-
ingly few CPU time, even with the new FFT length 2000. Inside libgnuradio, the statistics look
as follows:
CPU: CPU with timer interrupt, speed 0 MHz (estimated)

Profiling through timer interrupt

samples % image name symbol name

542 20.7583 libgnuradio-core.so.0.0.0 gr_multiply_cc::work()

325 12.4473 libgnuradio-core.so.0.0.0 gr_single_threaded_scheduler::main_loop()

290 11.1069 libgnuradio-core.so.0.0.0 gr_frequency_modulator_fc::work()

215 8.2344 libgnuradio-core.so.0.0.0 gr_sincosf

184 7.0471 libgnuradio-core.so.0.0.0 gr_kludge_copy::work()

183 7.0088 libgnuradio-core.so.0.0.0 gr_peak_detector_fb::work()

142 5.4385 libgnuradio-core.so.0.0.0 gr_fft_vcc_fftw::work()

80 3.0640 libgnuradio-core.so.0.0.0 gr_conjugate_cc::work()

72 2.7576 libgnuradio-core.so.0.0.0 gr_complex_to_mag_squared::work()

72 2.7576 libgnuradio-core.so.0.0.0 min_available_space()

71 2.7193 libgnuradio-core.so.0.0.0 gr_multiply_const_ff::work()

65 2.4895 libgnuradio-core.so.0.0.0 gr_block_detail::input()

[...]

One block that uses up a lot of CPU time is the frequency modulator (block 20 in Figure
A.1), which is used to correct the fine frequency offset. A simple idea to avoid its use is to simply
ask the USRP to retune the frequency instead. The implementation of this idea showed, that
the resource usage is indeed reduced drastically. It should be noted however, that this is a step
away from SDR. Also, whenever the frequency is retuned, the signal is disturbed.

Another block that uses up many CPU cycles is the complex multiplication block. One place
where a complex multiplication is done at the full data rate, is the fine frequency estimation
(block 14 in Figure A.1). This is especially awkward, because most of these multiplications are
unnecessary, as the fine frequency offset is estimated from the first eight (in the case of DAB
mode I) symbols only, and the values for the other symbols are not needed. To avoid this, a
signal would needed, which tells every block, when it needs to calculate outputs (by default,
every block in the flow graph processes all samples). This would require, that every block is
extended to be able to use such a control signal. A simpler method is to implement the whole
fine frequency estimation (blocks 12-17 in Figure A.1) in one block. Although this approach has
the disadvantage that modularity is lost, it is the preferable solution, because it generates the
least overhead for control signals and it is easily realizable. This idea is implemented in the C++
block ofdm ffe all in one (block 20 in Figure A.2).

Figure A.2 shows the OFDM demodulation with all the code improvements.

6.3.8 Receiving a Live Signal

Figure 6.20 shows a screen shot of the DAB constellation sink with samples from the Swiss DAB
ensemble located at 227.36 MHz.

With all the improvements explained in the previous section, the constellation now looks
much better than the one shown in Figure 6.9.

6.4 Fast Information Channel (FIC)

This section describes the process for decoding the FIC, which involves the decoding of the
convolutional code and reverting the energy dispersal. Although this chapter is written for the
FIC, the MSC is quite similar, as far as convolutional decoding and energy dispersal is concerned.

6.4.1 FIC Symbol Selection and Repartitioning

The first task in the FIC decoder is to select the symbols, which belong to the FIC. These are
the first symbols in the frame (except for the PRS). The number of FIC symbols depends on the

6.4. FAST INFORMATION CHANNEL (FIC) 46

Figure 6.20: DAB constellation sink with samples from the Swiss DAB ensemble at 227.36 MHz.

DAB mode. The block responsible for this task is called select vectors (its implementation
is generic, i.e. it can be used to select any number of vectors at the start of the frame or after
skipping a given number of vectors).

The next task is to repartition the vectors, such that each vector contains one codeword. In
the case of DAB mode I for instance, three OFDM symbols with 3072 bits each contain four
convolutional codewords with 2034 bits each, and therefore three vectors need to be repartitioned
into four vectors. This task is done in the block repartition vectors.

6.4.2 Convolutional Coding

Unpuncturing

The bits that have been removed during puncturing (as described in Section 3.3.3) have to be
reinserted. As these bits are not known, the block unpuncture vff simply inserts soft bits that
are zero. Since a zero is exactly between the two constellation points (real and imaginary part
of the symbols are treated separately), it corresponds to a bit that is unknown.

Viterbi Decoder

The module gr-trellis, which was written by Achilleas Anastasopoulos, implements a generic
FSM class and a generic Viterbi decoder. This module makes the decoding process rather simple.

First, an object with the FSM described in Section 11.1.1 of the DAB specification is in-
stantiated. This can easily be done by calling the appropriate constructor with the generator
polynomials and the input and output bit width.

Secondly, a combined block, which first calculates the metrics for the input symbols and then
does the decoding is instantiated. This is a bit more complicated. As the metrics calculator
considers each four bits generated by one input bit to the FSM as one of 16 possible symbols,
a constellation table with 64 entries is needed, specifying the 4 constellation points for each of
the 16 symbols. The metrics calculator uses the distance from the constellation point to get an
estimate for the certainty of correct detection.

6.4. FAST INFORMATION CHANNEL (FIC) 47

With the metrics, the Viterbi decoder then selects the most likely path in the trellis and
outputs the corresponding bit sequence.

6.4.3 Energy Dispersal Scrambling

As the XOR operation is symmetric, the procedure to undo energy dispersal is exactly the same
as the one applied in the transmitter – a PRBS that is generated according to the DAB standard
is added modulo 2 to the signal.

6.4.4 FIB Sink

The FIB sink simply collects and sorts the information from the FIBs.
Figure 6.21 shows an application that demodulates a DAB signal from samples in a file and

prints out the station labels from the received FIBs.

Figure 6.21: Station labels extracted from a DAB signal.

Chapter 7

Conclusions and Outlook

7.1 Conclusions

One of the major challenges when implementing a software defined radio is the limited amount of
available processing time. The majority of papers about signal processing algorithms is written
from a primarily mathematical perspective, and many of these algorithms are not suitable for a
software implementation. Therefore, the choice often has to be made in favor of the faster algo-
rithm, rather than the one with the best receiving performance. On the other hand, computers
are getting faster and faster. Even though the project of this thesis was developed and tested on
a laptop with a single core CPU, CPUs with four and more cores are available today.

With all features (input filtering, frequency correction, magnitude equalisation, ..) except
dynamic resampling1 turned on, the presented implementation of DAB in GNU Radio requires
about 95% of the available CPU time to demodulate the complete OFDM signal and decode the
FIC in real-time (using a five years old ThinkPad laptop with an 1.6 GHz CPU). Without the
FFT filter at the input, even only about 80% of the available processing power is required. Since
most of the processing power is spent for OFDM demodulation, a complete real-time software
DAB receiver is certainly feasible on current hardware.

A big advantage for implementing an algorithm in software, is the open availability of existing
code for a similar problem. Often, only minor adjustments of existing code are needed to reuse
it for a new problem. While making such adjustments still requires a complete understanding
of the used algorithm, the availability of open code for a similar problem facilitates both the
process of learning and implementing the algorithm.

In the case of GNU Radio, all source code, including the Verilog code for the FPGA, is
available for inspection and reuse, which was very helpful.

7.2 Outlook

To finally be able to hear an audio signal, the implementation of the MSC is needed. As many
blocks required for this have already been implemented for the FIC, this should not be too much
work.

Once the receiver is complete, a comparison to hardware receivers would be interesting, to
evaluate the receiving performance practically, rather than only with simulations as described
in Section 6.3. On the other hand, the existing test bench and simulation code could easily be
adapted to do other interesting simulations. For instance, the performance of SFNs could be
evaluated by using an appropriate FIR tap for each transmitter.

1The current fractional resampler is too slow to run in real-time together with the rest of the code; the USRP
is however accurate enough to not require sampling frequency correction.

7.2. OUTLOOK 49

To save some of the required processing power, it would also be interesting to see, whether
the receiver can be extended, such that it adapts itself dynamically to the receiving conditions.
For instance, if the conditions are good and the channel changes only slowly, an update of the
magnitude equalisation factors for each new frame may not be necessary, and it may be done
less often. The ultimate idea behind software defined radio is to have a cognitive radio, which is
completely aware of its RF environment, and adapts all its parameters whenever needed.

Finally, it would also be interesting to implement a DAB transmitter. Since a transmitter
does not require such things as frequency synchronisation, its implementation is often much easier
than the implementation of the corresponding receiver. As the physical layer has already been
implemented and most blocks for the upper layers are already available, the implementation of
a DAB transmitter in GNU Radio should be comparatively easy. With a complete transmitter
and receiver implementation, DAB could also be used to transport other data, for instance to
build a wireless data network between two computers equipped with USRPs operating in the 2.4
GHz ISM band.

Appendix A

Signal Flow Graphs

The following pages contain flow graphs from various parts of the DAB code. The content of
these blocks and the underlying algorithms are explained in Chapter 6.

51

file_source (1)

kludge_copy (3)

fft_filter_ccc (4)

0

measure_processing_rate (29)

0

kludge_copy (6)

complex_to_mag_squared (8)

0

delay (12)

0

conjugate_cc (13)

0

delay (18)

0

moving_sum_ff (9)

multiply_const_ff (10)

peak_detector_fb (11)

ofdm_ffs_sample (17)

1

0

delay (19)

0

multiply_cc (14)

1 0

moving_sum_cc (15)

complex_to_arg (16)

0

frequency_modulator_fc (20)

multiply_cc (21)
1

ofdm_sampler (22)

1

0

0

fft_vcc_fftw (23)

0

ofdm_coarse_frequency_correct (24)

1

1

0

diff_phasor_vcc (25)

0

ofdm_remove_first_symbol_vcc (26)

1

1

0

frequency_interleaver_vcc (27)

0

file_sink (31)

1

qpsk_demapper_vcb (28)

file_sink (30)

Fin
e
 Fre

q
u
e
n
cy

S
y
n
ch

ro
n
isatio

nFr
am

e
 S

ta
rt

D
e
te

ct
io

n

Figure A.1: First version of OFDM demodulation.

52

file_source (1)

kludge_copy (3)

complex_to_mag_squared (6)

0

fractional_interpolator_triggered_update_cc (12)

0

0

measure_processing_rate (33)

0

fft_filter_ccc (4)

kludge_copy (14)

moving_sum_ff (7)

multiply_const_ff (8)

peak_detector_fb (9)

estimate_sample_rate_bf (10)

0

1

0

probe_signal_f (11)

complex_to_mag_squared (16)

0

ofdm_ffe_all_in_one (20)

0

0

delay (21)

0

moving_sum_ff (17)

multiply_const_ff (18)

peak_detector_fb (19)

1

0

delay (22)

0

frequency_modulator_fc (23)

multiply_cc (24)
1

ofdm_sampler (25)

1

0

0

fft_vcc_fftw (26)

0

ofdm_coarse_frequency_correct (27)

1

1

0

diff_phasor_vcc (28)

0

ofdm_remove_first_symbol_vcc (29)

1

1

0

magnitude_equalizer_vcc (30)

0

0

1

1

frequency_interleaver_vcc (31)

0

file_sink (35)

1

qpsk_demapper_vcb (32)

file_sink (34)

(via Python)

Figure A.2: Revised version of OFDM demodulation: With resampling, magnitude equalization
and a single block for fine frequency estimation.

53

vector_source_b

stream_to_vector

vector_source_b

ofdm_insert_pilot_vcc

1

vector_sink_b

null_sink

qpsk_mapper_vbc

vector_to_stream

0

sum_phasor_trig_vcc

0

0

1

1

frequency_interleaver_vcc

0

insert_null_symbol

1

1

ofdm_move_and_insert_zero

fft_vcc_fftw

ofdm_cyclic_prefixer

stream_to_vector

0

multiply_const_cc

multiply_const_cc

fractional_interpolator_cc

0

probe_avg_mag_sqrd_c

0

fir_filter_ccc

multiply_cc

0

add_cc

kludge_copy

0

probe_avg_mag_sqrd_c

0

noise_source_c

0

sig_source_c

1

1

fft_filter_ccc

kludge_copy

complex_to_mag_squared

0

delay

0

conjugate_cc

0

delay

0

moving_sum_ff

multiply_const_ff

peak_detector_fb

delay

0

ofdm_ffs_sample

1

0

multiply_cc

1 0

moving_sum_cc

complex_to_arg

multiply_const_ff

0

ofdm_sampler

1

frequency_modulator_fc

multiply_cc
1

0

0

fft_vcc_fftw

0

ofdm_coarse_frequency_correct

1

1

0

diff_phasor_vcc

0

ofdm_remove_first_symbol_vcc

1

1

0

1

frequency_interleaver_vcc

0

qpsk_demapper_vcb

Modulation

Channel

Demodulation

Figure A.3: DAB OFDM test bench: Modulation, channel model and demodulation.

54

usrp1_source_c

kludge_copy

fft_filter_ccc

0

measure_processing_rate

0

kludge_copy

complex_to_mag_squared

0

ofdm_ffe_all_in_one

0

0

delay

0

moving_sum_ff

multiply_const_ff

peak_detector_fb

1

0

delay

0

frequency_modulator_fc

multiply_cc
1

ofdm_sampler

1

0

0

fft_vcc_fftw

0

ofdm_coarse_frequency_correct

1

1

0

diff_phasor_vcc

0

ofdm_remove_first_symbol_vcc

1

1

0

magnitude_equalizer_vcc

0

0

0

1

1

frequency_interleaver_vcc

0

select_vectors

complex_to_interleaved_float_vcf

0 1

repartition_vectors

0

0

1

1

unpuncture_vff

0

repartition_vectors

1

1

vector_to_stream

viterbi_combined_fb

stream_to_vector

prune_vectors

vector_to_stream vector_source_b

xor_bb

10

stream_to_vector

0

null_sink

1

vector_to_stream

0

fib_sink_b

unpacked_to_packed_bb

stream_to_vector
1

OFDM
FIC

Figure A.4: Complete receiver with USRP as signal source, OFDM demodulation and FIC
decoding.

Appendix B

FFTW Speed Evaluation

As the USRP can not be used to sample directly at 2.048 MSPS (which is the inverse of the
fundamental time unit specified in the DAB standard), the nearest possible sample rate, 2 MSPS,
is used instead. Therefore, the signal must either be resampled, or the code must be able to use
any sample rate. The latter option would also require an FFT of length 2000 instead of 2048.

To answer the question, which option is more computationally intensive, the speed of the FFT
library, FFTW, has to be evaluated. According to the FFTW website, FFTW has a complexity
of O(n log n) for any length, even for primes. This does however not mean, that the runtime is
completely independent of the FFT length, but rather that the speed difference is only a constant
factor and not some function of the number of processed samples.

To evaluate the speed for the lengths between 1950 and 2050, a small test program in Python
was created. The result can be seen in Figure B.1.

Figure B.1: FFT speed evaluation.

It should be noted that the relative speed between different FFT sizes is also influenced
heavily by the architecture of the computer used (e.g. by the cache block size).

Table B.1 lists some of the run times from a simulation with 100’000’000 samples on two

56

different PCs,

a) a ThinkPad with an Intel Pentium M processor clocked at 1.6 GHz (with real-time schedul-
ing enabled and an SSE optimized FFTW library).

b) a Tardis (a student PC with a Dual Core Intel Pentium 4 CPU clocked at 3.2 GHz, from
which only one core was used)

The fastest result is in both cases the one with an FFT of length 2048.

2048 2000 Average runtime Longest runtime (length)
ThinkPad 3.66s 6.25s 17.07s 27.84s (2026)
Tardis 18.83s 19.95s 49.79s 191.99s (2039)

Table B.1: FFT runtime evaluation results

Although this shows up to a factor of 10 between the ideal case and the worst case, an FFT
of length 2000 is reasonably fast to justify its use. In total, the FFT block still uses less than
10% of the available CPU time, whereas resampling alone would need about 80% (and an FFT
of length 2048 would still be required in that case).

Appendix C

Additional Tools

This chapter briefly introduces some of the additional tools used for development and testing. As
good information on all of these tools is available online and they are not subject of this thesis,
the description is deliberately kept short. This should hopefully still suffice to understand, how
each tool fits into the development process.

All software presented in this chapter is open source software, which is freely available.

C.1 OProfile

OProfile is a statistical profiler for Linux, which can be used for performance analysis. OProfile
allows the profiling of programs by collecting statistical data with the aid of a kernel module.
Based on events, such as timer events, cache misses or memory references, samples (i.e. infor-
mation about the code which is currently being executed) are recorded.

Once all code has been executed, these samples can be retrieved from the OProfile daemon for
further processing. This allows a programmer to quantitatively analyze, how much computing
power is spent in some area of her code, relative to other parts. Besides analyzing single program
runs, it is possible to get differential information about multiple program runs, e.g. to find out,
whether a change in the code resulted in a performance increase.

Because OProfile uses a kernel module and hardware performance counters of the CPU,
profiling a program or a library requires no recompilations 1 or alike, which makes profiling very
convenient. This is especially useful for a toolkit like GNU Radio, where the mix of Python and
C++ code would otherwise complicate performance analysis.

Besides OProfile, standard Unix tools, such as time or top were used to evaluate the efficiency
of the code.

Further information on performance analysis can be found in [22]. Information about OProfile
can be found on the OProfile website [23], as well as in [24].

C.2 Python, IPython and SciPy

IPython is an advanced interactive shell for the Python programming language. Although the
Python interpreter comes with an interactive shell itself, IPython provides many advanced fea-
tures, such as completion or history, which are very useful for Python development. For GNU
Radio development, IPython can be used to manually test a signal processing block.

1Although not necessary, recompilation with debug information (i.e. for gcc with -g) is useful for code
annotation, however.

C.3. DOXYGEN 58

SciPy is a library, which provides many mathematical functions. Together with IPython, this
library can be used as an interactive Computer Algebra System (CAS), similar to Matlab, but
with Python as its underlying programming language.

More information about Python, IPython and SciPy can be found under http://python.
org/, http://ipython.scipy.org/ and http://scipy.org respectively.

C.3 Doxygen

Doxygen is a tool, which can be employed to extract comments from the source code of various
programming languages and create a code manual in Hypertext Markup Language (HTML),
LATEX, or a number of other output formats.

As a good documentation of the source code is important, it is preferable to document the
source code and let Doxygen create a code manual, rather than to write a separate manual.

More information on Doxygen is available on http://www.doxygen.org/.

C.4 Swig

Simplified Wrapper and Interface Generator (SWIG) is a tool which can automatically create
interfaces between two different programming languages. In the case of GNU Radio, SWIG is
used to create bindings between Python and C++ blocks.

Information about SWIG can be found at http://www.swig.org/.

C.5 Graphviz, dot and dump2dot

Graphviz is a graph visualization software package, which can be used to create visual graphs
from a textual representation. Specifically, the program dot from this package creates directed
graphs.

GNU Radio provides a function to dump textual information about the structure of a running
program. For this thesis, a small Python script called dump2dot was written, which converts this
information into a format suitable for dot. This allows the automatic generation of graphical
representations of a signal flow graph.

More information about Graphviz and dot can be found under http://www.graphviz.org/.

C.6 Subversion

Subversion is a version control system, i.e. it can be used to keep track of changes made in source
code or other documents. Whenever the code is checked in, its current state is stored on the
Subversion server. This is very helpful if some change in the code breaks the functionality, and
it also has the benefit, that a backup is always available.

Subversion is available from http://subversion.tigris.org/.

http://python.org/
http://python.org/
http://ipython.scipy.org/
http://scipy.org
http://www.doxygen.org/
http://www.swig.org/
http://www.graphviz.org/
http://subversion.tigris.org/

Appendix D

Code Overview

This section gives an overview of the program code. It does however not intend to describe the
purpose of the individual blocks and their functions, as this information is available in the HTML
documentation generated by Doxygen.

D.1 Python Code

The Python code is located in the directory gr-dab/src/python.
The main files are ofdm.py, which implements modulation (class ofdm mod) and demodulation

(class ofdm demod) for the DAB physical layer and fic.py, which provides the class fic decode,
to decode the FIC.

The following executables exist in gr-dab/src/python/:

� dab estimate samplerate.py – estimates the exact sample rate of samples from a file

� dab rx constellation.py – visual real-time constellation display of samples from the
USRP or from a file

� usrp dab rx.py – receive live FIC information with the USRP

� test fic.py – evaluate FIC information of samples from a file

� test ofdm.py – demodulate OFDM layer of samples from a file

� test ofdm sync dab.py – test the synchronisation code with samples from a file

All executables have built-in help pages, which can be displayed by calling the program with
the parameter -h, e.g. for dab rx constellation.py:

$./dab_rx_constellation.py -h
usage: dab_rx_constellation.py: [options] <filename>

options:
-h, --help show this help message and exit
-m DAB_MODE, --dab-mode=DAB_MODE

DAB mode [default=1]
-F, --filter-input enable FFT filter at input
-c, --correct-ffe do fine frequency correction
-u, --correct-ffe-usrp

do fine frequency correction by retuning the USRP

D.1. PYTHON CODE 60

instead of in software
-e, --equalize-magnitude

do magnitude equalization
-s RESAMPLE_FIXED, --resample-fixed=RESAMPLE_FIXED

resample by a fixed factor (fractional interpolation)
-S, --autocorrect-sample-rate

estimate sample rate offset and resample (dynamic
fractional interpolation)

-R RX_SUBDEV_SPEC, --rx-subdev-spec=RX_SUBDEV_SPEC
select USRP Rx side A or B [default=A]

-f FREQ, --freq=FREQ set frequency to FREQ [default=227360000.0]
-r SAMPLE_RATE, --sample-rate=SAMPLE_RATE

set sample rate to SAMPLE_RATE [default=2000000]
-d DECIM, --decim=DECIM

set decimation rate to DECIM [default=32]
-g RX_GAIN, --rx-gain=RX_GAIN

set receive gain in dB (default is midpoint)
-v, --verbose verbose output

Another important file is parameters.py. This file contains two classes, dab parameters,
which contains all parameters from the DAB standard, and receiver parameters, which con-
tains all parameters of the receiver. dab parameters also has many built-in self checks to verify
the DAB parameters.

D.1.1 Quality Assurance

The Python files in the directory gr-dab/src/python/qa are unit tests, to verify the correct
functioning of the blocks implemented in C++.

This is done in a way similar to how test benches are used in Very Large Scale Integration
(VLSI) design, by specifying vectors with stimuli and expected results. To check a block, the
appropriate stimuli are run through it and compared to the expected results.

This code can be executed with the make check command, which should always be done
between make and make install, and after changes in the source code.

D.1.2 Channel Tests

The Python files found under gr-dab/src/python/channel tests provide tools to test channel
effects and evaluate properties, such as SNR vs BER. These tests are documented in Section
6.3.

The following four scripts exist, to evaluate different effects:

� plot snr ber.py – evaluates the effect of noise

� plot freq shift ber.py – evaluates the effect of frequency shifts

� plot multipath ber.py – evaluates the effect of multipath propagation

� plot sampling rate offset ber.py – evaluates the effect of an offset in the sampling
frequency

All four scripts use the DAB test bench from the file dab tb.py, which is depicted in Figure
A.3.

D.2. C++ CODE 61

D.2 C++ Code

The source code for the C++ blocks is located in the directory gr-dab/src/lib. Each block
consists of header file (*.h) and the corresponding implementation (*.cc).

The bindings between C++ and Python are created with Swig. The file dab.i in gr-dab/src/lib
controls, how the bindings for each block are created.

D.3 Patches

The directory gr-dab/patches contains some patches for blocks in the GNU Radio framework.

Appendix E

Installation

This chapter gives an overview of how GNU Radio and the code developed in this thesis can be
installed. As GNU Radio is a rather complex toolkit, the first installation of GNU Radio and
associated code can be cumbersome. The GNU Radio community has however written some
good documents on how to install GNU Radio. Rather than reproducing them, they shall be
linked here:

� Readme: http://gnuradio.org/trac/browser/gnuradio/trunk/README

� Build guide: http://gnuradio.org/trac/wiki/BuildGuide

More documents can be found in the GNU Radio Wiki at http://gnuradio.org/trac/.

E.1 Operating System

While GNU Radio can be run under many operating systems, including Mac OS X, NetBSD and
Windows, Linux tends to be the easiest to use.

E.2 Packages

Some distributions provide packages for GNU Radio. As the DAB module relies on some of the
newer code found in the trunk, an installation from the code in the SVN repository is required.
The packages may however be useful to pull in the required dependencies.

E.3 External Dependencies

GNU Radio already has quite a few dependencies, which are listed in the Readme. The DAB
module does not introduce any new dependencies itself; but the channel testing code requires
two additional Python modules:

� Scipy (available from http://scipy.sourceforge.net)

� Matplotlib (available from http://matplotlib.sourceforge.net)

E.4 Installation

Once all external dependencies are satisfied, the build and install process is – in the ideal case –
as easy as

http://gnuradio.org/trac/browser/gnuradio/trunk/README
http://gnuradio.org/trac/wiki/BuildGuide
http://gnuradio.org/trac/
http://scipy.sourceforge.net
http://matplotlib.sourceforge.net

E.4. INSTALLATION 63

$./bootstrap

$./configure

$ make

$ make check

$ sudo make install

Appendix F

Presentation

On the following pages, the presentation slides are included, which were used for the presentation
on June 13th, 2008.

DAB
Software Receiver Implementation

Andreas Müller
Supervisor: Michael Lerjen

ETH – ITET – CTL

June 13, 2008

65

1 Introduction
Task
Software Defined Radio
DAB
GNU Radio and USRP

2 Implementation
OFDM Synchronisation
OFDM Demodulation

3 Evaluation
Test Setup
Results

4 Conclusions

5 Questions

Introduction Implementation Evaluation Conclusions Questions

Task

Goal: Implementation of a real-time DAB receiver as SDR

SDR
Software Defined Radio → (almost) all signal
processing in software

DAB
Digital Audio Broadcasting → digital radio
technology standardized by ETSI

Real-time
Process data as fast as it arrives → 2 MSPS or 16
MB/s

66

Introduction Implementation Evaluation Conclusions Questions

Software Defined Radio

Idea
Digitize the signal and do all the signal processing in (high level,
architecture independent) software.

Strengths

Flexibility
Reusable code, fast development cycle
Cognitive radio: Adapts itself dynamically to RF environment
→ better spectral and power efficiency

Weaknesses
Limited sample rate and dynamic range of ADCs and DACs
→ analog front end needed for filtering
Resource usage, energy consumption, cost

Introduction Implementation Evaluation Conclusions Questions

Digital Audio Broadcasting (DAB) Specification

Modes
Four modes for different frequency ranges and RF characteristics

Presentation: Mode I (Code: All Modes)

DAB Mode I OFDM signal

Frames with 76 OFDM symbols (1 pilot, 75 data)
Null symbols (energy zero) to separate frames
1536 subcarriers à 1 kHz & central carrier zero → 1.537 MHz
D-QPSK modulation for each subcarrier
Cyclic prefix: 504 samples → SFN with max. TX distance 74 km

Upper Layers

Punctured convolutional coding
Energy dispersal, Time interleaving
MPEG 2 audio coding

67

Introduction Implementation Evaluation Conclusions Questions

GNU Radio

Overview
Open source framework for real-time software radios
Provides many common building blocks: FFT, FIR & IIR filters,
mathematical operations, AGC, modulation & demodulation, . . .

Flow Graph Concept

Programmer creates a directed graph for sample flow
Signal processing blocks are written in C++ and wired together in
Python

Signal Processing Block

work() function receives a number of samples from scheduler
Block processes as many samples as possible and returns the
number of consumed and produced samples

Introduction Implementation Evaluation Conclusions Questions

Universal Software Radio Peripheral (USRP)

Hardware
Interface between computer and antenna is needed
Most commonly used with GNU Radio: USRP

USRP
Two AD9862 Mixed Signal Front-End Processors

4 DACs with sampling rate 128 MSPS→ 2 I/Q TX channels
4 ADCs with sampling rate 64 MSPS→ 2 I/Q RX channels

Altera Cyclone FPGA for conversion to/from baseband,
decimation/interpolation, multiplexing and buffering
Cypress FX2 USB 2.0 interface
Daughterboards according to selected frequency range

68

(Source: http://ettus.com)

Introduction Implementation Evaluation Conclusions Questions

OFDM I – Synchronisation

Time Synchronisation

Frame start detection must be accurate, as the other blocks
depend on it
Can easily be done by looking at the energy of the signal (Null
symbols)
Implemented with moving sum, inverter and peak detector

Frequency Synchronisation

Small subcarrier bandwidth → accurate synchronisation needed
Fine frequency synchronisation (offsets < subcarrier bandwidth)

compare cyclic prefix to end of the symbol→ fine frequency offset
can be estimated from the phase offset

Coarse frequency synchronisation (offsets > subcarrier bw)
done after fine frequency synchronisation and after FFT
simply shift signal in the frequency domain→ very efficient

69

Introduction Implementation Evaluation Conclusions Questions

OFDM II – Demodulation

Demodulation
Besides time and frequency synchronisation, demodulation is
rather straightforward
Sampler: Remove cyclic prefix, pack each OFDM symbol in a
vector
FFT
Calculate phase difference (undo the D in D-QPSK)
Magnitude equalization (only needed for soft bits, as the
information is only in the phase)
Undo frequency interleaving: Mix symbols according to
sequence specified in DAB standard
I and Q components contain independent bits → simply check if
<(x) > 0 and =(x) > 0

Introduction Implementation Evaluation Conclusions Questions

Test Setup

Simulation Cycle

Generate random bytes
Modulation
Channel-model distorts OFDM signal
Demodulation
Calculate BER from original and received bytes

Channel Model
Sampling frequency offset modeled by fractional interpolator
Multipath propagation modeled with FIR filter
Frequency offset (signal source + multiplication block)
AWGN (noise source + adder block)

70

Introduction Implementation Evaluation Conclusions Questions

Results – SNR

Introduction Implementation Evaluation Conclusions Questions

Results – Effects of Multipath Propagation

DAB Mode 1 2 3 4
Cyclic Prefix Length 504 126 63 252

71

Introduction Implementation Evaluation Conclusions Questions

Conclusions

Conclusions
Real-time processing is possible
FIBs successfully decoded
No audio yet

Challenges

Very efficient algorithms and programming needed
Many signal processing papers are written from a primarily
mathematical perspective

Advantages

Same code for simulation and actual receiver
Open source code of existing blocks helps understand algorithms
Existing code can sometimes be adapted for new purposes
GNU Radio: Large and enthusiastic community

Introduction Implementation Evaluation Conclusions Questions

Questions?

Thank you for your attention.

Appendix G

CD-ROM Content Listing

This semester thesis is accompanied by a CD-ROM, which has the following content:

/

gr-dabPython and C++ code for the DAB GNU Radio module

doc/index.html Source code documentation (generated by Doxygen)

task ...Task description

thesisThis semester thesis as Portable Document Format (PDF) file

presentation ..Presentation slides as PDF file

toolsAdditional tools developed for this thesis

samples ..Some DAB samples

test resultsDetailed results (log files) of the tests with the channel model

fft evalScript and log files from FFT speed evaluation

Appendix H

Acronyms

The following list provides an overview of the acronyms used throughout this thesis.

AAC Advanced Audio Coding

ADC Analog Digital Converter

AGC Automatic Gain Control

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CA Conditional Access

CAS Computer Algebra System

CIC Cascaded Integrator Comb

CIF Common Interleaved Frame

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CTL Communication Technology Laboratory

CU Capacity Unit

DAB Digital Audio Broadcasting

74

DAC Digital Analog Converter

DBSRX Direct Broadcast Satellite Receiver

DDC Digital Down-Converter

DECT Digital Enhanced Cordless Telecommunications

D-QPSK Differential Quadrature Phase Shift Keying

DRM Digital Radio Mondiale

DSP Digital Signal Processor

DUC Digital Up-Converter

ETSI European Telecommunications Standards Institute

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FIB Fast Information Block

FIC Fast Information Channel

FIG Fast Information Group

FIR Finite Impulse Response

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSM Finite State Machine

GNU GNU’s Not Unix

GPL General Public License

GPS Global Positioning System

GR GNU Radio

GRC GNU Radio Companion

75

GSM Global System for Mobile communications

HTML Hypertext Markup Language

ICI Inter Carrier Interference

IF Intermediate Frequency

IIR Infinite Impulse Response

ISM Industrial, Scientific and Medical

LFSR Linear Feedback Shift Register

MCI Multiplex Configuration Information

MPEG Moving Picture Experts Group

MP2 MPEG-1 Audio Layer II

MSC Main Service Channel

MSPS Mega Samples Per Second

OFDM Orthogonal Frequency Division Multiplexing

PCI Peripheral Component Interconnect

PDF Portable Document Format

ppm parts per million

PRBS Pseudo Random Binary Sequence

PRS Phase Reference Symbol

QA Quality Assertion

QPSK Quadrature Phase-Shift Keying

RF Radio Frequency

SC Service Component

SDR Software Defined Radio

76

SFN Single Frequency Network

SIMD Single Instruction, Multiple Data

SNR Signal to Noise Ratio

SR Software Radio

SSE Streaming SIMD Extensions

SI Service Information

SVN Subversion

SWIG Simplified Wrapper and Interface Generator

TII Transmitter Identification Information

TVRX Television Receiver

UDP User Datagram Protocol

UHF Ultra High Frequency

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VHF Very High Frequency

VLSI Very Large Scale Integration

Bibliography

[1] ETSI, “ETSI EN 300 401 V1.4.1: Radio Broadcasting Systems; Digital Audio Broadcasting

to mobile, portable and fixed receivers,” 2006. [Online]. Available: http://www.etsi.org

[2] ——, “ETSI ES 201 980 V2.3.1: Digital Radio Mondiale (DRM); System Specification,”

2008. [Online]. Available: http://www.etsi.org

[3] Wikipedia, “Digital Audio Broadcasting.” [Online]. Available: http://en.wikipedia.org/

wiki/Digital Audio Broadcasting

[4] ——, “Digital Radio Mondiale.” [Online]. Available: http://en.wikipedia.org/wiki/

Digital Radio Mondiale

[5] V. Fischer, “Software Implementation of a Digital Radio Mondiale (DRM) Receiver, Part

I (Framework),” Institute for Communication Technology, Darmstadt University of Tech-

nology. [Online]. Available: http://drm.sourceforge.net/papers/Software Implementation

of a Digital Radio Mondiale (DRM) Receiver, Part I (Framework).pdf

[6] J. P. Elsner, Implementation of the DAB physical layer in software using the GNU Radio

framework. Universität Karlsruhe, 2007.

[7] O. Edfors, M. Sandell, J. van de Beek, D. Landström, and F. Sjöberg, “An Introduction to

Orthogonal Frequency-Division Multiplexing,” 1996.

[8] Wikipedia, “Loudness war — Wikipedia, The Free Encyclopedia,” 2008. [Online].

Available: http://en.wikipedia.org/w/index.php?title=Loudness war

[9] D. J. M. Robinson, “OFCOM: Regulation in digital broadcasting: DAB digital radio

bitrates and audio quality; Dynamic range compression and loudness,” Department

of Electronic Systems Engineering, University of Essex, 2002. [Online]. Available:

http://www.david.robinson.org/commsbill/

http://www.etsi.org
http://www.etsi.org
http://en.wikipedia.org/wiki/Digital_Audio_Broadcasting
http://en.wikipedia.org/wiki/Digital_Audio_Broadcasting
http://en.wikipedia.org/wiki/Digital_Radio_Mondiale
http://en.wikipedia.org/wiki/Digital_Radio_Mondiale
http://drm.sourceforge.net/papers/Software_Implementation_of_a_Digital_Radio_Mondiale_(DRM)_Receiver,_Part_I_(Framework).pdf
http://drm.sourceforge.net/papers/Software_Implementation_of_a_Digital_Radio_Mondiale_(DRM)_Receiver,_Part_I_(Framework).pdf
http://en.wikipedia.org/w/index.php?title=Loudness_war
http://www.david.robinson.org/commsbill/

BIBLIOGRAPHY 78

[10] J. Mitola, “What is a Software Radio?” [Online]. Available: http://web.archive.org/web/

20050315234159/http://ourworld.compuserve.com/homepages/jmitola/whatisas.htm

[11] V. Bose, M. Ismert, M. Welborn, and J. Guttag, Virtual Radios. Massachusetts Institute

of Technology, 1998.

[12] J. Mitola, “Cognitive Radio – An Integrated Agent Architecture for Software

Defined Radio,” 2000. [Online]. Available: http://www.it.kth.se/∼maguire/jmitola/

Mitola Dissertation8 Integrated.pdf

[13] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency Spectrum,” Linux

Journal, 2004. [Online]. Available: http://www.linuxjournal.com/article/7319

[14] “GNU Radio project.” [Online]. Available: http://gnuradio.org/trac

[15] Q. Norton, “GNU Radio Opens an Unseen World,” Wired Magazine, 2006. [Online].

Available: http://www.wired.com/science/discoveries/news/2006/06/70933

[16] E. Blossom, “How to Write a Signal Processing Block.” [Online]. Available:

http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html

[17] Wikipedia, “CORDIC — Wikipedia, The Free Encyclopedia,” 2008. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=CORDIC&oldid=201345871

[18] G. R. Trac, “USRP FPGA,” 2008. [Online]. Available: http://gnuradio.org/trac/wiki/

UsrpFPGA

[19] M. Sliskovic, “Carrier and Sampling Frequency Offset Estimation and Correction in Multi-

carrier Systems,” 2001.

[20] T. M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,”

Signal Processing, IEEE Transactions on Communications, vol. 45, no. 12, pp. 1613–1621,

Dec 1997.

[21] J. van de Beek, M. Sandell, and P. Borjesson, “ML estimation of time and frequency offset

in OFDM systems,” Signal Processing, IEEE Transactions on [see also Acoustics, Speech,

and Signal Processing, IEEE Transactions on], vol. 45, no. 7, pp. 1800–1805, Jul 1997.

[Online]. Available: http://epubl.luth.se/avslutade/0347-0881/96-09/bsb96r.pdf

http://web.archive.org/web/20050315234159/http://ourworld.compuserve.com/homepages/jmitola/whatisas.htm
http://web.archive.org/web/20050315234159/http://ourworld.compuserve.com/homepages/jmitola/whatisas.htm
http://www.it.kth.se/~maguire/jmitola/Mitola_Dissertation8_Integrated.pdf
http://www.it.kth.se/~maguire/jmitola/Mitola_Dissertation8_Integrated.pdf
http://www.linuxjournal.com/article/7319
http://gnuradio.org/trac
http://www.wired.com/science/discoveries/news/2006/06/70933
http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html
http://en.wikipedia.org/w/index.php?title=CORDIC&oldid=201345871
http://gnuradio.org/trac/wiki/UsrpFPGA
http://gnuradio.org/trac/wiki/UsrpFPGA
http://epubl.luth.se/avslutade/0347-0881/96-09/bsb96r.pdf

BIBLIOGRAPHY 79

[22] Wikipedia, “Performance Analysis — Wikipedia, The Free Encyclopedia,” 2008. [On-

line]. Available: http://en.wikipedia.org/w/index.php?title=Performance analysis&oldid=

201033250

[23] J. Levon, “OProfile – A System Profiler for Linux.” [Online]. Available: http:

//oprofile.sourceforge.net/

[24] W. E. Cohen, “Tuning Programs with OProfile,” Wide Open Magazine, 2008. [Online].

Available: http://people.redhat.com/wcohen/Oprofile.pdf

http://en.wikipedia.org/w/index.php?title=Performance_analysis&oldid=201033250
http://en.wikipedia.org/w/index.php?title=Performance_analysis&oldid=201033250
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://people.redhat.com/wcohen/Oprofile.pdf

	Task Description
	Introduction
	Project Idea
	Software Framework
	Contributions
	Some Words on Notation

	DAB
	Introduction
	DAB Modes
	Fast Information Channel (FIC)
	FIB Assembler
	Energy Dispersal
	Convolutional Coding

	Main Service Channel (MSC)
	Frame Assembly and OFDM Modulation
	Frames
	OFDM Modulation
	Complete Signal

	Practical Considerations
	Availability of DAB in Switzerland
	Audio Quality

	Software Defined Radio
	Ideal Software Radio
	Practical Software Radio
	Analog-Digital Converters
	Bus Speed
	Performance of the Processing Unit
	Latency

	Review and Outlook

	GNU Radio and the USRP
	GNU Radio
	GNU Radio Architecture
	GNU Radio Companion

	The USRP
	USRP Architecture
	Using the USRP in a GNU Radio Application

	Wrap Up

	Implementation
	Setup
	Physical Layer (OFDM)
	Input Filtering
	Time Synchronisation
	Fine Carrier Frequency Synchronisation
	OFDM Sampler
	FFT
	Coarse Carrier Frequency Synchronisation
	Phase Differentiation
	Removal of the Phase Reference Symbol
	Sampling Frequency Offset Estimation and Resampling
	Magnitude Equalization
	Frequency Interleaving
	Symbol Demapping

	Evaluation of the Physical Layer
	The Test Setup
	BER in AWGN Channel
	Effects of Coarse Carrier Frequency Offsets
	Effects of Fine Carrier Frequency Offsets
	Effects of Sampling Frequency Offsets
	Effects of Multipath Propagation
	Evaluation of the Processing Speed
	Receiving a Live Signal

	Fast Information Channel (FIC)
	FIC Symbol Selection and Repartitioning
	Convolutional Coding
	Energy Dispersal Scrambling
	FIB Sink

	Conclusions and Outlook
	Conclusions
	Outlook

	Signal Flow Graphs
	FFTW Speed Evaluation
	Additional Tools
	OProfile
	Python, IPython and SciPy
	Doxygen
	Swig
	Graphviz, dot and dump2dot
	Subversion

	Code Overview
	Python Code
	Quality Assurance
	Channel Tests

	C++ Code
	Patches

	Installation
	Operating System
	Packages
	External Dependencies
	Installation

	Presentation
	CD-ROM Content Listing
	Acronyms
	Bibliography

